Explaining universality: infinite limit systems in the renormalization group method

被引:5
|
作者
Wu, Jingyi [1 ]
机构
[1] Univ Calif Irvine, Dept Log & Philosophy Sci, Irvine, CA 92697 USA
关键词
Renormalization group method; Scientific explanation; Infinite idealizations; Linearization*; Critical phase transitions; IDEALIZATIONS;
D O I
10.1007/s11229-021-03448-2
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I then motivate and prove a proposition about the linearization* property in support of my view. As a result, infinite limit systems in RG explanations are dispensable.
引用
收藏
页码:14897 / 14930
页数:34
相关论文
共 50 条
  • [21] Estimation of the Boundary of the Limit Cycle of Brusselator Oscillators by the Renormalization Group Method
    Wang, Li
    Bai, Yuzhen
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [22] 2-SCALE-FACTOR UNIVERSALITY AND RENORMALIZATION GROUP
    HOHENBERG, PC
    AHARONY, A
    HALPERIN, BI
    SIGGIA, ED
    PHYSICAL REVIEW B, 1976, 13 (07) : 2986 - 2996
  • [23] Universality in the Exact Renormalization Group: Comparison to Perturbation Theory
    Gaite, Jose
    UNIVERSE, 2023, 9 (09)
  • [24] Universality Classes of Percolation Processes: Renormalization Group Approach
    Hnatic, Michal
    Honkonen, Juha
    Lucivjansky, Tomas
    Mizisin, Lukas
    SYMMETRY-BASEL, 2023, 15 (09):
  • [25] LATTICE RENORMALIZATION GROUP AND THERMODYNAMIC LIMIT
    LEWIS, AL
    PHYSICAL REVIEW B, 1977, 16 (03): : 1249 - 1252
  • [26] Limit cycles in renormalization group dynamics
    Bulycheva, K. M.
    Gorsky, A. S.
    PHYSICS-USPEKHI, 2014, 57 (02) : 171 - 182
  • [27] RENORMALIZATION GROUP IN LARGE N LIMIT
    MA, S
    PHYSICS LETTERS A, 1973, A 43 (05) : 475 - 476
  • [28] RENORMALIZATION GROUP METHOD FOR A CLASS OF LAGRANGE MECHANICAL SYSTEMS
    Mingliang, Zheng
    JOURNAL OF THE SERBIAN SOCIETY FOR COMPUTATIONAL MECHANICS, 2022, 16 (02) : 96 - 104
  • [29] Numerical renormalization group method for quantum impurity systems
    Bulla, Ralf
    Costi, Theo A.
    Pruschke, Thomas
    REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 395 - 450
  • [30] RENORMALIZATION-GROUP METHOD FOR QUANTUM SPIN SYSTEMS
    MATTIS, D
    SCHILLING, R
    HELVETICA PHYSICA ACTA, 1981, 54 (02): : 334 - 334