Short-Term Solar PV Forecasting Based on Recurrent Neural Network and Clustering

被引:3
|
作者
Sodsong, Nattawat [1 ]
Yu, Kun-Ming [1 ]
Ouyang, Wen [1 ]
Chuang, Ken H. [2 ]
机构
[1] Chung Hua Univ, Dept Comp Sci & Informat Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei, Taiwan
关键词
Solar PV; Artificial Neural Network; Deep Learning; Hierarchical Clustering; Recurrent Neural Network;
D O I
10.1117/12.2550322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the large-scale deployment of solar photovoltaic (PV) installation, managing the efficiency of the generation system has become essential. One of the main challenges facing solar PV power output lies in the difficulty in managing solar irradiance fluctuation. Generally speaking, the power output is heavily influenced by solar irradiance and sky conditions which are consistently changing. Thus, the ability to accurately forecast the solar PV power is critical for optimizing the generation system and ensuring the quality of service. In this paper, we propose a solar PV forecasting model using Recurrent Neural Network (RNN) in a Cascade model combined with Hierarchical Clustering for improving the overall prediction accuracy of solar PV forecast. The proposed model, upon comparing with other learning algorithms, namely, Feed-forward Artificial Neural Network (FFNN), GRU, Support Vector Regression (SVR) and K Nearest Neighbors (KNN) using the cluster data from K-Means Clustering and Hierarchical Clustering, had the lowest average NRMSE of 8.88% using Hierarchical clustered data. According to the results, Hierarchical Clustering suits better for solar PV forecast than K-means clustering.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Short-term power load forecasting based on multi-layer bidirectional recurrent neural network
    Tang, Xianlun
    Dai, Yuyan
    Wang, Ting
    Chen, Yingjie
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (17) : 3847 - 3854
  • [42] Combined forecasting system for short-term bus load forecasting based on clustering and neural networks
    Panapakidis, Ioannis P.
    Skiadopoulos, Nikolaos
    Christoforidis, Georgios C.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3652 - 3664
  • [43] A novel clustering approach for short-term solar radiation forecasting
    Ghayekhloo, M.
    Ghofrani, M.
    Menhaj, M. B.
    Azimi, R.
    SOLAR ENERGY, 2015, 122 : 1371 - 1383
  • [44] Short-Term Load Forecasting Using Time Pooling Deep Recurrent Neural Network
    Vaygan, Elahe Khoshbakhti
    Rajabi, Roozbeh
    Estebsari, Abouzar
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [45] Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models
    Cao, Cong
    Dragicevic, Suzana
    Li, Songnian
    SUSTAINABILITY, 2019, 11 (19)
  • [46] Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Salamat, Ali
    Cierniak-Emerych, Anna
    Krejcar, Ondrej
    HRADEC ECONOMIC DAYS, VOL 11(1), 2021, 11 : 145 - 154
  • [47] Forecasting cryptocurrency prices using Recurrent Neural Network and Long Short-term Memory
    Nasirtafreshi, I.
    DATA & KNOWLEDGE ENGINEERING, 2022, 139
  • [48] The neural network model based on PSO for short-term load forecasting
    Sun, Wei
    Zhang, Ying-Xia
    Li, Fang-Tao
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3069 - +
  • [49] Confidence intervals for neural network based short-term load forecasting
    da Silva, AP
    Moulin, LS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1191 - 1196
  • [50] Short-term electric load forecasting based on a neural fuzzy network
    Ling, SH
    Leung, FHF
    Lam, HK
    Tam, PKS
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (06) : 1305 - 1316