Short-Term Solar PV Forecasting Based on Recurrent Neural Network and Clustering

被引:3
|
作者
Sodsong, Nattawat [1 ]
Yu, Kun-Ming [1 ]
Ouyang, Wen [1 ]
Chuang, Ken H. [2 ]
机构
[1] Chung Hua Univ, Dept Comp Sci & Informat Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei, Taiwan
关键词
Solar PV; Artificial Neural Network; Deep Learning; Hierarchical Clustering; Recurrent Neural Network;
D O I
10.1117/12.2550322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the large-scale deployment of solar photovoltaic (PV) installation, managing the efficiency of the generation system has become essential. One of the main challenges facing solar PV power output lies in the difficulty in managing solar irradiance fluctuation. Generally speaking, the power output is heavily influenced by solar irradiance and sky conditions which are consistently changing. Thus, the ability to accurately forecast the solar PV power is critical for optimizing the generation system and ensuring the quality of service. In this paper, we propose a solar PV forecasting model using Recurrent Neural Network (RNN) in a Cascade model combined with Hierarchical Clustering for improving the overall prediction accuracy of solar PV forecast. The proposed model, upon comparing with other learning algorithms, namely, Feed-forward Artificial Neural Network (FFNN), GRU, Support Vector Regression (SVR) and K Nearest Neighbors (KNN) using the cluster data from K-Means Clustering and Hierarchical Clustering, had the lowest average NRMSE of 8.88% using Hierarchical clustered data. According to the results, Hierarchical Clustering suits better for solar PV forecast than K-means clustering.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A novel recurrent neural network approach in forecasting short term solar irradiance
    Jaihuni, Mustafa
    Basak, Jayanta Kumar
    Khan, Fawad
    Okyere, Frank Gyan
    Sihalath, Thavisak
    Bhujel, Anil
    Park, Jihoon
    Lee, Deog Hyun
    Kim, Hyeon Tae
    ISA TRANSACTIONS, 2022, 121 : 63 - 74
  • [22] Short-term passenger flow forecasting of urban rail transit based on recurrent neural network
    Zhang H.-Z.
    Gao Z.-K.
    Li J.-Q.
    Wang C.-X.
    Pan Y.-B.
    Wang C.
    Wang J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (02): : 430 - 438
  • [23] A multiple time series-based recurrent neural network for short-term load forecasting
    Bing Zhang
    Jhen-Long Wu
    Pei-Chann Chang
    Soft Computing, 2018, 22 : 4099 - 4112
  • [24] A multiple time series-based recurrent neural network for short-term load forecasting
    Zhang, Bing
    Wu, Jhen-Long
    Chang, Pei-Chann
    SOFT COMPUTING, 2018, 22 (12) : 4099 - 4112
  • [25] Short-Term Load Forecasting Based on RBF Neural Network
    Zhao, Bing
    Liang, Yue
    Gao, Xin
    Liu, Xin
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [26] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +
  • [27] Short-term load forecasting based on fuzzy neural network
    Wang, Cuiru
    Cui, Zhikun
    Chen, Qi
    IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 335 - 338
  • [28] Short-term Load Forecasting Based on BP Neural Network
    Li Yan-bin
    Li Peng
    Li Guan-hong
    ICPOM2008: PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE OF PRODUCTION AND OPERATION MANAGEMENT, VOLUMES 1-3, 2008, : 1182 - 1186
  • [29] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [30] Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network
    Michael, Neethu Elizabeth
    Hasan, Shazia
    Al-Durra, Ahmed
    Mishra, Manohar
    APPLIED ENERGY, 2022, 324