Improvements to the Sliding Discrete Fourier Transform Algorithm [Tips & Tricks]

被引:11
|
作者
Lyons, Richard [1 ]
Howard, Carl [2 ,3 ]
机构
[1] Univ Akron, Auburn, CA 95603 USA
[2] Univ Adelaide, Adelaide, SA, Australia
[3] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
关键词
Quantization (signal); Current measurement; Discrete Fourier transforms; Signal processing algorithms; Real-time systems; Frequency measurement; Computational efficiency;
D O I
10.1109/MSP.2021.3075416
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents two networks that improve upon the behavior and performance of previously published sliding discrete Fourier transform (SDFT) algorithms. The proposed networks are structurally simple, computationally efficient, guaranteed stable networks used for real-time sliding spectrum analysis. The first real-time network computes one spectral output sample, equal to a singlebin output of an N-point DFT, for each input signal sample. The second real-time network is frequency flexible, in that its analysis frequency can be any scalar value in the range of zero to one-half the input data sample rate measured in cycles per second.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [1] Useful Tips and Tricks on Digital Data Processing with Discrete Fourier Transform
    Sindhura, Bokkisam
    Ashwin, S.
    Rajkumar, G.
    Elamaran, V
    Sankar, M.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2018), 2018, : 738 - 742
  • [2] Simplifying Single-Bin Discrete Fourier Transform Computations [Tips & Tricks]
    Troncoso Romero, David Ernesto
    Cruz Jimenez, Miriam Guadalupe
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2021, 38 (02) : 130 - 136
  • [3] Output stabilization of sliding discrete Fourier transform algorithm
    Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, China
    [J]. Dianbo Kexue Xuebao, 2012, 4 (773-779+796):
  • [4] Harmonics Measurement With a Modulated Sliding Discrete Fourier Transform Algorithm
    Orallo, Carlos M.
    Carugati, Ignacio
    Maestri, Sebastian
    Donato, Patricio G.
    Carrica, Daniel
    Benedetti, Mario
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (04) : 781 - 793
  • [5] Generalized Sliding Discrete Fourier Transform
    Murakami, Takahiro
    Ishida, Yoshihisa
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (01): : 338 - 345
  • [6] A Novel Sliding Window Algorithm for 2D Discrete Fourier Transform
    Dong, Zhifang
    Wu, Jiasong
    Gui, Jiyong
    [J]. MIPPR 2015: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION; AND MEDICAL IMAGING PROCESSING, 2015, 9814
  • [7] Sliding Discrete Fourier Transform with Kernel Windowing
    Rafii, Zafar
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 88 - 92
  • [8] Algorithm 991: The 2D Tree Sliding Window Discrete Fourier Transform
    Richardson, Lee F.
    Eddy, William F.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (01):
  • [9] DISCRETE FOURIER-TRANSFORM AND FAST FOURIER ALGORITHM
    KRISHNAN, V
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 1974, 56 (05): : 227 - 249
  • [10] Recursive sliding discrete Fourier transform with oversampled data
    van der Byl, A.
    Inggs, M. R.
    [J]. DIGITAL SIGNAL PROCESSING, 2014, 25 : 275 - 279