Recursive sliding discrete Fourier transform with oversampled data

被引:7
|
作者
van der Byl, A. [1 ]
Inggs, M. R. [1 ]
机构
[1] Univ Cape Town, Dept Elect Engn, ZA-7701 Rondebosch, South Africa
关键词
Discrete Fourier transform; Recursive discrete Fourier transform; Sliding discrete Fourier transform; Running Fourier transform; Spectral updating; DFT;
D O I
10.1016/j.dsp.2013.10.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Discrete Fourier Transform (DFT) has played a fundamental role for signal analysis. A common application is, for example, an FFT to compute a spectral decomposition, in a block by block fashion. However, using a recursive, discrete. Fourier transform technique enables sample-by-sample updating, which, in turn, allows for the computation of a fine time-frequency resolution. An existing spectral output is updated in a sample-by-sample fashion using a combination of the Fourier time shift property and the difference between the most recent input sample and outgoing sample when using a window of finite length. To maintain sampling-to-processing synchronisation, a sampling constraint is enforced on the front-end hardware, as the processing latency per input sample will determine the maximum sampling rate. This work takes the recursive approach one step further, and enables the processing of multiple samples acquired through oversampling, to update the spectral output. This work shows that it is possible to compute a fine-grained spectral decomposition while increasing usable signal bandwidths through higher sampling rates. Results show that processing overhead increases sub-linearly, with signal bandwidth improvement factors of up to 6.7x when processing 8 samples per iteration. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
  • [1] Observer-Based Recursive Sliding Discrete Fourier Transform
    Kollar, Zsolt
    Plesznik, Ferenc
    Trumpf, Simon
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 100 - 106
  • [2] Generalized Sliding Discrete Fourier Transform
    Murakami, Takahiro
    Ishida, Yoshihisa
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (01): : 338 - 345
  • [3] Software Implementation of the Recursive Discrete Fourier Transform
    Kovacs, Marton
    Kollar, Zsolt
    [J]. 2017 27TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2017, : 61 - 65
  • [4] Sliding Discrete Fourier Transform with Kernel Windowing
    Rafii, Zafar
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 88 - 92
  • [5] Fast recursive algorithm for sliding discrete sine transform
    Kober, V
    [J]. ELECTRONICS LETTERS, 2002, 38 (25) : 1747 - 1748
  • [6] Output stabilization of sliding discrete Fourier transform algorithm
    Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, China
    [J]. Dianbo Kexue Xuebao, 2012, 4 (773-779+796):
  • [7] Accurate, Guaranteed Stable, Sliding Discrete Fourier Transform
    Duda, Krzysztof
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (06) : 124 - 127
  • [8] Sample-by-sample Power Quality Disturbance classification based on Sliding Window Recursive Discrete Fourier Transform
    Rodrigues, Luiz Fernando A.
    Monteiro, Henrique L. M.
    Ferreira, Danton D.
    Barbosa, Bruno H. G.
    Carlos, A. R.
    Duque, Carlos A.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2024, 235
  • [9] Constraining error-A sliding discrete Fourier transform investigation
    van der Byl, A.
    Inggs, M. R.
    [J]. DIGITAL SIGNAL PROCESSING, 2016, 51 : 54 - 61
  • [10] Fast, Accurate, and Guaranteed Stable Sliding Discrete Fourier Transform
    Park, Chun-Su
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (04) : 145 - 156