Algorithm 991: The 2D Tree Sliding Window Discrete Fourier Transform

被引:0
|
作者
Richardson, Lee F. [1 ]
Eddy, William F. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
关键词
Fast Fourier Transform; Data Structure; COMPUTATION; COMPLEXITY;
D O I
10.1145/3264426
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new algorithm for the 2D sliding window discrete Fourier transform. Our algorithm avoids repeating calculations in overlapping windows by storing them in a tree data-structure based on the ideas of the Cooley-Tukey fast Fourier transform. For an N-0 x N-1 array and n(0) x n(1) windows, our algorithm takes O(N(0)N(1)n(0)n(1)) operations. We provide a C implementation of our algorithm for the Radix-2 case, compare ours to existing algorithms, and show how our algorithm easily extends to higher dimensions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Novel Sliding Window Algorithm for 2D Discrete Fourier Transform
    Dong, Zhifang
    Wu, Jiasong
    Gui, Jiyong
    [J]. MIPPR 2015: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION; AND MEDICAL IMAGING PROCESSING, 2015, 9814
  • [2] 2D Discrete Fourier Transform on Sliding Windows
    Park, Chun-Su
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (03) : 901 - 907
  • [3] Sliding 2D Discrete Fractional Fourier Transform
    Liu, Yu
    Miao, Hongxia
    Zhang, Feng
    Tao, Ran
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1733 - 1737
  • [4] Output stabilization of sliding discrete Fourier transform algorithm
    Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, China
    [J]. Dianbo Kexue Xuebao, 2012, 4 (773-779+796):
  • [5] Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm
    Rasheed, Mohammed H.
    Salih, Omar M.
    Siddeq, Mohammed M.
    Rodrigues, Marcos A.
    [J]. ARRAY, 2020, 6
  • [6] Study and simulation of harmonic detection based on sliding-window iterative algorithm of discrete fourier transform
    Lu, Xiu-Ling
    Zhou, La-Wu
    Zhang, Song-Hua
    Cao, Cai-Kai
    [J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (14): : 3652 - 3655
  • [7] 2D SYSTOLIC SOLUTION TO DISCRETE FOURIER-TRANSFORM
    JONES, KJ
    [J]. IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1989, 136 (03): : 211 - 216
  • [8] Improvements to the Sliding Discrete Fourier Transform Algorithm [Tips & Tricks]
    Lyons, Richard
    Howard, Carl
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2021, 38 (04) : 119 - 127
  • [9] Harmonics Measurement With a Modulated Sliding Discrete Fourier Transform Algorithm
    Orallo, Carlos M.
    Carugati, Ignacio
    Maestri, Sebastian
    Donato, Patricio G.
    Carrica, Daniel
    Benedetti, Mario
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (04) : 781 - 793
  • [10] A Fast 2D Discrete Tchebichef Transform Algorithm
    Huang, Wei
    Chen, Shuai
    Zheng, Gengsheng
    [J]. 2010 INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATION AND 2010 ASIA-PACIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND OCEAN ENGINEERING: CICC-ITOE 2010, PROCEEDINGS, 2010, : 358 - 361