Modification of basis functions in high order discontinuous Galerkin schemes for advection equation

被引:3
|
作者
Petrovskaya, N. B. [1 ]
Wolkov, A. V. [2 ]
Lyapunov, S. V. [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Cent Aerohydrodynam Inst, TsAGI Zhukovsky 140180, Moscow Region, Russia
关键词
high order discretization; unstructured grids; discontinuous Galerkin; modified basis functions;
D O I
10.1016/j.apm.2007.02.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High order discontinuous Galerkin (DG) discretization schemes are considered for an advection boundary-value problem on 2-D unstructured grids with arbitrary geometry of grid cells. A number of test cases are developed to study the sensitivity of a high order DG scheme to local grid distortion. It will be demonstrated how to modify the formulation of a DG discretization for the advection equation. Our approach allows one to maintain the required accuracy on distorted grids while using a fewer number of basis functions for the solution approximation in order to save computational resources. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:826 / 835
页数:10
相关论文
共 50 条
  • [31] Vectorization and Minimization of Memory Footprint for Linear High-Order Discontinuous Galerkin Schemes
    Gallard, Jean-Matthieu
    Rannabauer, Leonhard
    Reinarz, Anne
    Bader, Michael
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 711 - 720
  • [32] A high-order conservative remap for discontinuous Galerkin schemes on curvilinear polygonal meshes
    Lipnikov, Konstantin
    Morgan, Nathaniel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 399
  • [33] A high order space-momentum discontinuous Galerkin method for the Boltzmann equation
    Kitzler, G.
    Schoeberl, J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (07) : 1539 - 1554
  • [34] High-order hybridisable discontinuous Galerkin method for the gas kinetic equation
    Su, Wei
    Wang, Peng
    Zhang, Yonghao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (08) : 335 - 342
  • [35] High-order finite volume schemes for the advection-diffusion equation
    Hernández, JA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (05) : 1211 - 1234
  • [36] On High Order ADER Discontinuous Galerkin Schemes for First Order Hyperbolic Reformulations of Nonlinear Dispersive Systems
    Busto, Saray
    Dumbser, Michael
    Escalante, Cipriano
    Favrie, Nicolas
    Gavrilyuk, Sergey
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [37] On High Order ADER Discontinuous Galerkin Schemes for First Order Hyperbolic Reformulations of Nonlinear Dispersive Systems
    Saray Busto
    Michael Dumbser
    Cipriano Escalante
    Nicolas Favrie
    Sergey Gavrilyuk
    Journal of Scientific Computing, 2021, 87
  • [38] Local Discontinuous Galerkin Method for the Variable-Order Fractional Mobile-Immobile Advection-Dispersion Equation
    Miaomiao Yang
    Lijie Liu
    Leilei Wei
    Computational Mathematics and Mathematical Physics, 2025, 65 (2) : 308 - 319
  • [39] High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation
    Min Zhang
    Yang Liu
    Hong Li
    Communications on Applied Mathematics and Computation, 2020, 2 : 613 - 640
  • [40] DISCONTINUOUS GALERKIN GALERKIN DIFFERENCES FOR THE WAVE EQUATION IN SECOND-ORDER FORM
    Banks, J. W.
    Buckner, B. Brett
    Hagstrom, T.
    Juhnke, K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1497 - A1526