High-Order Local Discontinuous Galerkin Algorithm with Time Second-Order Schemes for the Two-Dimensional Nonlinear Fractional Diffusion Equation

被引:0
|
作者
Min Zhang
Yang Liu
Hong Li
机构
[1] Xiamen University,School of Mathematical Sciences
[2] Inner Mongolia University,School of Mathematical Sciences
关键词
Two-dimensional nonlinear fractional diffusion equation; High-order LDG method; Second-order ; scheme; Stability and error estimate; 65M60; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, some high-order local discontinuous Galerkin (LDG) schemes based on some second-order θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta $$\end{document} approximation formulas in time are presented to solve a two-dimensional nonlinear fractional diffusion equation. The unconditional stability of the LDG scheme is proved, and an a priori error estimate with O(hk+1+Δt2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{k+1}+\varDelta t^2)$$\end{document} is derived, where k⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 0$$\end{document} denotes the index of the basis function. Extensive numerical results with Qk(k=0,1,2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q^k(k=0,1,2,3)$$\end{document} elements are provided to confirm our theoretical results, which also show that the second-order convergence rate in time is not impacted by the changed parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}.
引用
收藏
页码:613 / 640
页数:27
相关论文
共 50 条