Uncertainty quantification with spectral approximations of a flood model

被引:4
|
作者
Liu, D. S. [1 ]
Matthies, H. G. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Comp Sci, D-38092 Braunschweig, Germany
关键词
DIFFERENTIAL-EQUATIONS; CHAOS;
D O I
10.1088/1757-899X/10/1/012208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work establishes a stochastic flood model based on shallow water equations (SWE) for Toce river valley in Italy by combining the deterministic SWE with a probabilistic description of some parameters that are subject to uncertainties, and approximates the model by Hermite polynomial chaos expansions (PCE) and subsequently by Karhunen-Loeve expansions (KLE) for the purposes of fast explorations of the model's probabilistic behaviour and data compressions. It is shown that to represent the model to the same accuracy of its variance, PCE and KLE approximations need to store much smaller size of data than a collocation representation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] On the Quantification of Model Uncertainty: A Bayesian Perspective
    David Kaplan
    Psychometrika, 2021, 86 : 215 - 238
  • [42] On Valid Uncertainty Quantification About a Model
    Martin, Ryan
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 295 - 303
  • [43] Quantification of model uncertainty in environmental modeling
    Ye, Ming
    Meyer, Philip D.
    Lin, Yu-Feng
    Neuman, Shlomo P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (06) : 807 - 808
  • [44] On the Quantification of Model Uncertainty: A Bayesian Perspective
    Kaplan, David
    PSYCHOMETRIKA, 2021, 86 (01) : 215 - 238
  • [45] Uncertainty quantification for optical model parameters
    Lovell, A. E.
    Nunes, F. M.
    Sarich, J.
    Wild, S. M.
    PHYSICAL REVIEW C, 2017, 95 (02)
  • [46] CLOSURE LAW MODEL UNCERTAINTY QUANTIFICATION
    Strand, Andreas
    Kjolaas, Jorn
    Bergstrom, Trond H.
    Steinsland, Ingelin
    Hellevik, Leif Rune
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (03) : 31 - 48
  • [47] On the Choice of Design Points for Least Square Polynomial Approximations with Application to Uncertainty Quantification
    Gao, Zhen
    Zhou, Tao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (02) : 365 - 381
  • [48] Uncertainty quantification of spectral predictions using deep neural networks
    Verma, Sneha
    Aznan, Nik Khadijah Nik
    Garside, Kathryn
    Penfold, Thomas J.
    CHEMICAL COMMUNICATIONS, 2023, 59 (46) : 7100 - 7103
  • [49] Spectral convergence of probability densities for forward problems in uncertainty quantification
    Sagiv, Amir
    NUMERISCHE MATHEMATIK, 2022, 150 (04) : 1165 - 1186
  • [50] Spectral convergence of probability densities for forward problems in uncertainty quantification
    Amir Sagiv
    Numerische Mathematik, 2022, 150 : 1165 - 1186