Uncertainty quantification of spectral predictions using deep neural networks

被引:4
|
作者
Verma, Sneha [1 ]
Aznan, Nik Khadijah Nik [2 ]
Garside, Kathryn [2 ]
Penfold, Thomas J. [1 ]
机构
[1] Newcastle Univ, Chem, Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, England
[2] Newcastle Univ, Res Software Engineer Grp, Newcastle Upon Tyne NE1 7RU, England
基金
英国工程与自然科学研究理事会;
关键词
LIGHT;
D O I
10.1039/d3cc01988h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the performance of uncertainty quantification methods, namely deep ensembles and bootstrap resampling, for deep neural network (DNN) predictions of transition metal K-edge X-ray absorption near-edge structure (XANES) spectra. Bootstrap resampling combined with our multi-layer perceptron (MLP) model provides an accurate assessment of uncertainty with >90% of all predicted spectral intensities falling within +/- 3 sigma of the true values for held-out data across the nine first-row transition metal K-edge XANES spectra.
引用
收藏
页码:7100 / 7103
页数:4
相关论文
共 50 条
  • [1] Uncertainty quantification for predictions of atomistic neural networks
    Vazquez-Salazar, Luis Itza
    Boittier, Eric D.
    Meuwly, Markus
    [J]. CHEMICAL SCIENCE, 2022, 13 (44) : 13068 - 13084
  • [2] Predictive Uncertainty Quantification of Deep Neural Networks using Dirichlet Distributions
    Hammam, Ahmed
    Bonarens, Frank
    Ghobadi, Seyed Eghbal
    Stiller, Christoph
    [J]. PROCEEDINGS OF 6TH ACM COMPUTER SCIENCE IN CARS SYMPOSIUM, CSCS 2022, 2022,
  • [3] Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference
    Steinbrener, Jan
    Posch, Konstantin
    Pilz, Juergen
    [J]. SENSORS, 2020, 20 (21) : 1 - 22
  • [4] Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks
    Van Molle, Pieter
    Verbelen, Tim
    Vankeirsbilck, Bert
    De Vylder, Jonas
    Diricx, Bart
    Kimpe, Tom
    Simoens, Pieter
    Dhoedt, Bart
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10259 - 10275
  • [5] Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks
    Pieter Van Molle
    Tim Verbelen
    Bert Vankeirsbilck
    Jonas De Vylder
    Bart Diricx
    Tom Kimpe
    Pieter Simoens
    Bart Dhoedt
    [J]. Neural Computing and Applications, 2021, 33 : 10259 - 10275
  • [6] Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks
    Lan, Shiwei
    Li, Shuyi
    Shahbaba, Babak
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1684 - 1713
  • [7] Clarifying trust of materials property predictions using neural networks with distribution-specific uncertainty quantification
    Gruich, Cameron J.
    Madhavan, Varun
    Wang, Yixin
    Goldsmith, Bryan R.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [8] Neural SDE-Based Epistemic Uncertainty Quantification in Deep Neural Networks
    Tharzeen, Aabila
    Dahale, Shweta
    Natarajan, Balasubramaniam
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 247 - 258
  • [9] Large-Scale Spectral Analysis for Element Quantification using Deep Neural Networks
    Xie, Xiang
    Stork, Wilhelm
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Bond order predictions using deep neural networks
    Magedov, Sergey
    Koh, Christopher
    Malone, Walter
    Lubbers, Nicholas
    Nebgen, Benjamin
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 129 (06)