Supporting Visual Data Exploration via Interactive Constraints

被引:0
|
作者
Lucas, Wendy [1 ]
Gordon, Taylor [1 ]
机构
[1] Bentley Univ, Waltham, MA 02452 USA
来源
SOFTWARE TECHNOLOGIES | 2017年 / 743卷
关键词
Force-directed layouts; Interactive data exploration; Constraint specification; Multivariate data; INFORMATION; VISUALIZATION;
D O I
10.1007/978-3-319-62569-0_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This work aims to bridge the gap between the goals of the users of information visualization systems and the techniques that are currently available to them for interacting with force-directed layouts. We propose that the benefits from applying positional constraints to graphical objects extend beyond their typical use in network graphs. In particular, a constraint-based approach can be an effective means for aiding users in exploring multivariate data that, by its nature, is difficult to present effectively. Providing easy to use and understand slider components for specifying the strength of constraints applied in a layout gives users the ability to subtly control graphic object positioning. Objects can be filtered and automatically grouped based on the value of one or more properties, with each property representing a different data variable. Applying different constraint strengths to these groups provides an effective means for identifying commonalities and patterns in multivariate data.
引用
收藏
页码:132 / 152
页数:21
相关论文
共 50 条
  • [21] Collaborative filtering over evolution provenance data for interactive visual data exploration
    Ben Lahmar, Houssem
    Herschel, Melanie
    [J]. INFORMATION SYSTEMS, 2021, 95
  • [22] Interactive visual exploration and analysis
    Weber, Gunther H.
    Hauser, Helwig
    [J]. Mathematics and Visualization, 2014, 37 : 161 - 173
  • [23] Pheno-Mapper: An Interactive Toolbox for the Visual Exploration of Phenomics Data
    Zhou, Youjia
    Kamruzzaman, Methun
    Schnable, Patrick
    Krishnamoorthy, Bala
    Kalyanaraman, Ananth
    Wang, Bei
    [J]. 12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [24] Effortless Data Exploration with zenvisage: An Expressive and Interactive Visual Analytics System
    Siddiqui, Tarique
    Kim, Albert
    Lee, John
    Karahalios, Karrie
    Parameswaran, Aditya
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 10 (04): : 457 - 468
  • [25] Mobile and Multimodal? A Comparative Evaluation of Interactive Workplaces for Visual Data Exploration
    Leon, G. Molina
    Lischka, M.
    Luo, W.
    Breiter, A.
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (03) : 417 - 428
  • [26] AN INTERACTIVE COUNTRY DATA EXPLORATION SYSTEM PROVIDING VISUAL CLUES TO STUDENTS
    Kajiyama, Tomoko
    Satoh, Shin'ichi
    [J]. INTED2012: INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2012, : 757 - 764
  • [27] Just-in-time interactive analytics: Guiding visual exploration of data
    Kandogan, E.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2015, 59 (2-3)
  • [28] FuryExplorer: Visual-Interactive Exploration of Horse Motion Capture Data
    Wilhelm, Nils
    Voegele, Anna
    Zsoldos, Rebeka
    Licka, Theresia
    Krueger, Bjoern
    Bernard, Juergen
    [J]. VISUALIZATION AND DATA ANALYSIS 2015, 2015, 9397
  • [29] Connecting segments for visual data exploration and interactive mining of decision rules
    Ferrer-Troyano, FJ
    Aguilar-Ruiz, JS
    Riquelme, JC
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2005, 11 (11) : 1835 - 1848
  • [30] A Constrained Randomization Approach to Interactive Visual Data Exploration with Subjective Feedback
    Kang, Bo
    Puolamaki, Kai
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (09) : 1666 - 1679