A Constrained Randomization Approach to Interactive Visual Data Exploration with Subjective Feedback

被引:1
|
作者
Kang, Bo [1 ]
Puolamaki, Kai [2 ]
Lijffijt, Jefrey [1 ]
De Bie, Tijl [1 ]
机构
[1] Univ Ghent, IDLab, Dept Elect & Informat Syst, B-9000 Ghent, Belgium
[2] Univ Helsinki, Dept Comp Sci, Helsinki 00100, Finland
基金
欧洲研究理事会; 欧盟地平线“2020”; 芬兰科学院;
关键词
Data visualization; Data models; Computational modeling; Data mining; Reactive power; Visualization; Tools; Exploratory data mining; dimensionality reduction; data randomization; subjective interestingness; NONLINEAR DIMENSIONALITY REDUCTION; LINES; FIT;
D O I
10.1109/TKDE.2019.2907082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data visualization and iterative/interactive data mining are growing rapidly in attention, both in research as well as in industry. However, while there are a plethora of advanced data mining methods and lots of works in the field of visualization, integrated methods that combine advanced visualization and/or interaction with data mining techniques in a principled way are rare. We present a framework based on constrained randomization which lets users explore high-dimensional data via 'subjectively informative' two-dimensional data visualizations. The user is presented with 'interesting' projections, allowing users to express their observations using visual interactions that update a background model representing the user's belief state. This background model is then considered by a projection-finding algorithm employing data randomization to compute a new 'interesting' projection. By providing users with information that contrasts with the background model, we maximize the chance that the user encounters striking new information present in the data. This process can be iterated until the user runs out of time or until the difference between the randomized and the real data is insignificant. We present two case studies, one controlled study on synthetic data and another on census data, using the proof-of-concept tool SIDE that demonstrates the presented framework.
引用
收藏
页码:1666 / 1679
页数:14
相关论文
共 50 条
  • [1] Interactive visual data exploration with subjective feedback: an information-theoretic approach
    Puolamaki, Kai
    Oikarinen, Emilia
    Kang, Bo
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (01) : 21 - 49
  • [2] Interactive Visual Data Exploration with Subjective Feedback: An Information-Theoretic Approach
    Puolamaki, Kai
    Oikarinen, Emilia
    Kang, Bo
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. 2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1208 - 1211
  • [3] Interactive visual data exploration with subjective feedback: an information-theoretic approach
    Kai Puolamäki
    Emilia Oikarinen
    Bo Kang
    Jefrey Lijffijt
    Tijl De Bie
    [J]. Data Mining and Knowledge Discovery, 2020, 34 : 21 - 49
  • [4] A Tool for Subjective and Interactive Visual Data Exploration
    Kang, Bo
    Puolamaki, Kai
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 : 3 - 7
  • [5] Interactive Exploration of Data with Visual Metaphors
    Cybulski, Jacob L.
    Keller, Susan
    Saundage, Dilal
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2015, 25 (02) : 231 - 252
  • [6] Interactive maps for visual data exploration
    Andrienko, GL
    Andrienko, NV
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1999, 13 (04) : 355 - 374
  • [7] Feedback-Driven Interactive Exploration of Large Multidimensional Data Supported by Visual Classifier
    Behrisch, Michael
    Korkmaz, Fatih
    Shao, Lin
    Schreck, Tobias
    [J]. 2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 43 - 52
  • [8] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    [J]. IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [9] Interactive visual exploration of surgical process data
    Benedikt Mayer
    Monique Meuschke
    Jimmy Chen
    Beat P. Müller-Stich
    Martin Wagner
    Bernhard Preim
    Sandy Engelhardt
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 127 - 137
  • [10] Interactive visual exploration of surgical process data
    Mayer, Benedikt
    Meuschke, Monique
    Chen, Jimmy
    Muller-Stich, Beat P.
    Wagner, Martin
    Preim, Bernhard
    Engelhardt, Sandy
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (01) : 127 - 137