A further result on majorization theorem

被引:8
|
作者
Jiang, Xiaoyan [1 ]
Liu, Yingluan [1 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 09期
关键词
majorization; bicyclic; spectral radius; SPECTRAL-RADIUS; GRAPHS; TREES;
D O I
10.1080/03081087.2010.495720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi = (d(1), d(2),...,d(n)) and pi' = (d(1)', d(2)',...,d(n)') be two non-increasing degree sequences. We say pi is majorizated by pi', denoted by pi (sic) pi', if and only if pi not equal pi', Sigma(n)(i=1) di = Sigma(n)(i=1) d(i)' and Sigma(j)(i=1) d(i) <= Sigma(j)(i=1) d(i)' for all j = 1, 2,..., n - 1. We use C(pi) to denote the class of connected graphs with degree sequence pi. Let rho(G) be the spectral radius, i. e. the largest eigenvalue of the adjacent matrix of G. In this article, we prove that if pi (sic) pi', B and B' are the bicyclic graphs with the greatest spectral radius in C(pi) and C(pi'), respectively, then rho(B) < rho(B'). And we give an example to show that this majorization theorem is not true for tricyclic graphs.
引用
收藏
页码:957 / 967
页数:11
相关论文
共 50 条