A further result on majorization theorem

被引:8
|
作者
Jiang, Xiaoyan [1 ]
Liu, Yingluan [1 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 09期
关键词
majorization; bicyclic; spectral radius; SPECTRAL-RADIUS; GRAPHS; TREES;
D O I
10.1080/03081087.2010.495720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi = (d(1), d(2),...,d(n)) and pi' = (d(1)', d(2)',...,d(n)') be two non-increasing degree sequences. We say pi is majorizated by pi', denoted by pi (sic) pi', if and only if pi not equal pi', Sigma(n)(i=1) di = Sigma(n)(i=1) d(i)' and Sigma(j)(i=1) d(i) <= Sigma(j)(i=1) d(i)' for all j = 1, 2,..., n - 1. We use C(pi) to denote the class of connected graphs with degree sequence pi. Let rho(G) be the spectral radius, i. e. the largest eigenvalue of the adjacent matrix of G. In this article, we prove that if pi (sic) pi', B and B' are the bicyclic graphs with the greatest spectral radius in C(pi) and C(pi'), respectively, then rho(B) < rho(B'). And we give an example to show that this majorization theorem is not true for tricyclic graphs.
引用
收藏
页码:957 / 967
页数:11
相关论文
共 50 条
  • [11] Some results on the majorization theorem of connected graphs
    Liu, Mu Huo
    Liu, Bo Lian
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (02) : 371 - 378
  • [12] Sharpening Jensen's inequality and a majorization theorem
    Abramovich, S
    Mond, B
    Pecaric, JE
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 214 (02) : 721 - 728
  • [13] Some Results on the Majorization Theorem of Connected Graph
    Mu Huo LIU
    Bo Lian LIU
    [J]. Acta Mathematica Sinica., 2012, 28 (02) - 378
  • [14] Some Results on the Majorization Theorem of Connected Graph
    Mu Huo LIU
    Bo Lian LIU
    [J]. Acta Mathematica Sinica,English Series, 2012, (02) : 371 - 378
  • [15] GENERALIZATION OF MAJORIZATION THEOREM VIA TAYLOR'S FORMULA
    Butt, Saad Ihsan
    Kvesic, Ljiljanka
    Pecaric, Josip
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1257 - 1269
  • [16] A MAJORIZATION THEOREM FOR THE C-MATRICES OF BINARY DESIGNS
    GIOVAGNOLI, A
    WYNN, HP
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1980, 4 (02) : 145 - 154
  • [17] Majorization, 4G Theorem and Schrodinger perturbations
    Bogdan, Krzysztof
    Butko, Yana
    Szczypkowski, Karol
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (02) : 241 - 260
  • [18] Majorization, 4G Theorem and Schrödinger perturbations
    Krzysztof Bogdan
    Yana Butko
    Karol Szczypkowski
    [J]. Journal of Evolution Equations, 2016, 16 : 241 - 260
  • [19] The majorization theorem and signless Dirichlet spectral radius of connected graphs
    Zhang, Guang-Jun
    Deng, Dameng
    Zhang, Jie
    [J]. ARS COMBINATORIA, 2017, 132 : 49 - 58
  • [20] The Majorization Theorem for Signless Laplacian Spectral Radii of Connected Graphs
    Liu, Bolian
    Liu, Muhuo
    You, Zhifu
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (02) : 281 - 287