A further result on majorization theorem

被引:8
|
作者
Jiang, Xiaoyan [1 ]
Liu, Yingluan [1 ]
Liu, Bolian [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 09期
关键词
majorization; bicyclic; spectral radius; SPECTRAL-RADIUS; GRAPHS; TREES;
D O I
10.1080/03081087.2010.495720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi = (d(1), d(2),...,d(n)) and pi' = (d(1)', d(2)',...,d(n)') be two non-increasing degree sequences. We say pi is majorizated by pi', denoted by pi (sic) pi', if and only if pi not equal pi', Sigma(n)(i=1) di = Sigma(n)(i=1) d(i)' and Sigma(j)(i=1) d(i) <= Sigma(j)(i=1) d(i)' for all j = 1, 2,..., n - 1. We use C(pi) to denote the class of connected graphs with degree sequence pi. Let rho(G) be the spectral radius, i. e. the largest eigenvalue of the adjacent matrix of G. In this article, we prove that if pi (sic) pi', B and B' are the bicyclic graphs with the greatest spectral radius in C(pi) and C(pi'), respectively, then rho(B) < rho(B'). And we give an example to show that this majorization theorem is not true for tricyclic graphs.
引用
收藏
页码:957 / 967
页数:11
相关论文
共 50 条
  • [1] GENERALIZATION OF MAJORIZATION THEOREM
    Khan, M. Adil
    Latif, N.
    Pecaric, J.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 847 - 872
  • [2] The majorization theorem of connected graphs
    Liu, Muhuo
    Liu, Bolian
    You, Zhifu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 553 - 557
  • [3] The majorization theorem of extremal pseudographs
    Liu, Muhuo
    Liu, Bolian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 13 - 22
  • [4] Majorization theorem for convexifiable functions
    Khan, Muhammad Adil
    [J]. MATHEMATICAL COMMUNICATIONS, 2013, 18 (01) : 61 - 65
  • [5] A further result on an implicit function theorem for locally Lipschitz functions
    Sun, DF
    [J]. OPERATIONS RESEARCH LETTERS, 2001, 28 (04) : 193 - 198
  • [6] GENERALIZATION OF MAJORIZATION THEOREM-II
    Latif, Naveed
    Siddique, Nouman
    Pecaric, Josip
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 731 - 752
  • [7] Integral Majorization Theorem for Invex Functions
    Khan, M. Adil
    Kilicman, Adem
    Rehman, N.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] On the proof of the majorization theorem for quantum Gaussian channels
    Holevo, A. S.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (03) : 585 - 587
  • [9] Some results on the majorization theorem of connected graphs
    Mu Huo Liu
    Bo Lian Liu
    [J]. Acta Mathematica Sinica, English Series, 2012, 28 : 371 - 378
  • [10] GENERALIZATION OF SYMANZIKS THEOREM ON THE MAJORIZATION OF FEYNMAN GRAPHS
    LOGUNOV, AA
    TODOROV, IT
    CHERNIKOV, NA
    [J]. SOVIET PHYSICS JETP-USSR, 1962, 15 (05): : 891 - 896