Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops

被引:10
|
作者
Hara, Wahei [1 ]
机构
[1] Waseda Univ, Dept Math, Sch Sci & Engn, Shinjuku Ku, 3-4-1 Ohkubo, Tokyo 1698555, Japan
关键词
Derived category; Mukai flop; Non-commutative crepant resolution; Quiver representation;
D O I
10.1016/j.aim.2017.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure <(B(1))over bar> of type A, and study relations between an NCCR and crepant resolutions Y and Y+ of <(B(1))over bar>. More precisely, we show that the NCCR is isomorphic to the path algebra of the double Beilinson quiver with certain relations and we reconstruct the crepant resolutions Y and Y+ of <(B(1))over bar> as moduli spaces of representations of the quiver. We also study the Kawamata Namikawa's derived equivalence between crepant resolutions Y and Y+ of <(B(1))over bar> in terms of an NCCR. We also show that the P-twist on the derived category of Y corresponds to a certain operation of the NCCR, which we call multi-mutation, and that a multi-mutation is a composition of Iyama Wemyss's mutations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 410
页数:56
相关论文
共 50 条
  • [31] A Dirac Type Operator on the Non-Commutative Disk
    Carey, Alan L.
    Klimek, Slawomir
    Wojciechowski, Krzysztof P.
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (02) : 107 - 125
  • [32] Characterizations of Minimal Elements in a Non-commutative Lp-Space
    Zhang, Ying
    Jiang, Lining
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [33] On non-commutative correction of the Godel-type metric
    Ulhoa, S. C.
    Santos, A. F.
    Amorim, R. G. G.
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (09)
  • [34] CONCERNING NON-COMMUTATIVE BANACH ALGEBRAS OF TYPE ES
    ZELAZKO, W
    COLLOQUIUM MATHEMATICUM, 1969, 20 (01) : 121 - &
  • [36] The sum of two locally nilpotent rings may contain a free non-commutative subring
    Fukshansky, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) : 383 - 386
  • [37] Desingularization of Schubert varieties and orbit closures of prehomogeneous vector spaces of commutative parabolic type
    Gyoja, A
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (02): : 239 - 254
  • [38] Quantum limits on pixel resolution from non-commutative photon coordinates
    Sivasubramanian, S
    Castellani, G
    Fabiano, N
    Widom, A
    Swain, J
    Srivastava, YN
    Vitiello, G
    JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) : 1529 - 1534
  • [39] Spectrum of the Kratzer-type molecule in non-commutative spaces
    Debabi, M.
    Boussahel, M.
    INDIAN JOURNAL OF PHYSICS, 2024,
  • [40] Non-commutative oscillator with Kepler-type dynamical symmetry
    Zhang, P. M.
    Horvathy, P. A.
    Ngome, J. -P.
    PHYSICS LETTERS A, 2010, 374 (42) : 4275 - 4278