Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops

被引:10
|
作者
Hara, Wahei [1 ]
机构
[1] Waseda Univ, Dept Math, Sch Sci & Engn, Shinjuku Ku, 3-4-1 Ohkubo, Tokyo 1698555, Japan
关键词
Derived category; Mukai flop; Non-commutative crepant resolution; Quiver representation;
D O I
10.1016/j.aim.2017.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure <(B(1))over bar> of type A, and study relations between an NCCR and crepant resolutions Y and Y+ of <(B(1))over bar>. More precisely, we show that the NCCR is isomorphic to the path algebra of the double Beilinson quiver with certain relations and we reconstruct the crepant resolutions Y and Y+ of <(B(1))over bar> as moduli spaces of representations of the quiver. We also study the Kawamata Namikawa's derived equivalence between crepant resolutions Y and Y+ of <(B(1))over bar> in terms of an NCCR. We also show that the P-twist on the derived category of Y corresponds to a certain operation of the NCCR, which we call multi-mutation, and that a multi-mutation is a composition of Iyama Wemyss's mutations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 410
页数:56
相关论文
共 50 条
  • [21] Minimal length uncertainty and generalized non-commutative geometry
    Farmany, A.
    Abbasi, S.
    Darvishi, M. T.
    Khani, F.
    Naghipour, A.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2833 - 2835
  • [22] Minimal Non-Commutative n-Insertive Rings
    Li Qiong Xu
    Wei Min Xue
    Acta Mathematica Sinica, 2003, 19 : 141 - 146
  • [23] NILPOTENT GRAPHS OF SKEW POLYNOMIAL RINGS OVER NON-COMMUTATIVE RINGS
    Nikmehr, Mohamad Javad
    Azadi, Abdolreza
    TRANSACTIONS ON COMBINATORICS, 2020, 9 (01) : 41 - 48
  • [24] A non-commutative version of the minimal supersymmetric standard model
    Arai, M.
    Saxell, S.
    Tureanu, A.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 51 (01): : 217 - 228
  • [25] Conic divisorial ideals and non-commutative crepant resolutions of edge rings of complete multipartite graphs
    Higashitani, Akihiro
    Matsushita, Koji
    JOURNAL OF ALGEBRA, 2022, 594 : 685 - 711
  • [26] Axes of Jordan Type in Non-commutative Algebras
    Rowen, Louis
    Segev, Yoav
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [27] A Dirac Type Operator on the Non-Commutative Disk
    Alan L. Carey
    Sławomir Klimek
    Krzysztof P. Wojciechowski
    Letters in Mathematical Physics, 2010, 93 : 107 - 125
  • [28] Non-commutative Grobner bases and Anick's resolution
    Cojocaru, S
    Podoplelov, A
    Ufnarovski, V
    COMPUTATIONAL METHODS FOR REPRESENTATIONS OF GROUPS AND ALGEBRAS, 1999, 173 : 139 - 159
  • [29] The relative singularity category of a non-commutative resolution of singularities
    Burban, Igor
    Kalck, Martin
    ADVANCES IN MATHEMATICS, 2012, 231 (01) : 414 - 435
  • [30] RESOLUTION OF PROBLEMS OF ANGLE MEASUREMENT IN A NON-COMMUTATIVE CASE
    DONEDDU, A
    ARCHIV DER MATHEMATIK, 1968, 19 (05) : 540 - &