A biohybrid strategy for enabling photoredox catalysis with low-energy light

被引:32
|
作者
Cesana, Paul T. [1 ]
Li, Beryl X. [2 ]
Shepard, Samuel G. [3 ]
Ting, Stephen, I [2 ,4 ]
Hart, Stephanie M. [1 ]
Olson, Courtney M. [1 ]
Alvarado, Jesus I. Martinez [2 ]
Son, Minjung [1 ,5 ]
Steiman, Talia J. [2 ,6 ]
Castellano, Felix N. [3 ]
Doyle, Abigail G. [2 ,4 ]
MacMillan, David W. C. [2 ]
Schlau-Cohen, Gabriela S. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[6] Snapdragon Chem, Waltham, MA 02451 USA
来源
CHEM | 2022年 / 8卷 / 01期
关键词
ELECTRON-TRANSFER; TRINUCLEAR COMPLEXES; TRANSFER PATHWAYS; R-PHYCOERYTHRIN; INFRARED LIGHT; UP-CONVERSION; PHOTOCATALYSIS; STATE; PHOTOSYNTHESIS; PHYCOBILISOME;
D O I
10.1016/j.chempr.2021.10.010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural systems drive the high-energy reactions of photosynthesis with efficient and broadband energy capture. Transition-metal photocatalysts similarly convert light into chemical reactivity, and yet suffer from light-limited operation and require blue-to-UV excitation. In photosynthesis, both light capture and reactivity have been optimized by separation into distinct sites. Inspired by this modular architecture, we synthesized a biohybrid photocatalyst by covalent attachment of the photosynthetic light-harvesting protein R-phycoerythrin (RPE) to the transition-metal photocatalyst tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+)). Spectroscopic investigation found that absorbed photoenergy was efficiently funneled from RPE to [Ru(bpy)(3)](2+) The utility of the biohybrid photocatalyst was demonstrated via an increase in yields for a thiol-ene coupling reaction and a cysteinyl-desulfurization reaction, including recovered reactivity at red wavelengths where [Ru(bpy)(3)](2+) alone does not absorb.
引用
收藏
页码:174 / 185
页数:13
相关论文
共 50 条
  • [21] Pharmaceutical applications of visible light photoredox catalysis
    Stephenson, Corey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [22] Homogeneous Visible-Light Photoredox Catalysis
    Zou, You-Quan
    Chen, Jia-Rong
    Xiao, Wen-Jing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) : 11701 - 11703
  • [23] Merging Visible Light Photoredox and Gold Catalysis
    Hopkinson, Matthew N.
    Tlahuext-Aca, Adrian
    Glorius, Frank
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (10) : 2261 - 2272
  • [24] Reassessing a proposed low-energy strategy for the UK
    Kumar, S
    Taylor, R
    Probert, D
    APPLIED ENERGY, 1999, 62 (04) : 213 - 239
  • [25] Synthetic applications of photoredox catalysis with visible light
    Xi, Yumeng
    Yi, Hong
    Lei, Aiwen
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2013, 11 (15) : 2387 - 2403
  • [26] Photoredox/Bismuth Relay Catalysis Enabling Reductive Alkylation of Nitroarenes with Aldehydes
    Li, Jinlian
    Chen, Xing
    Xie, Shenxia
    Wang, Huabing
    Mo, Jiayu
    Huang, Huawen
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (40)
  • [27] Dosimetry of low-energy protons and light ions
    Besserer, J
    Bilski, P
    de Boer, J
    Kwiecien, T
    Moosburger, M
    Olko, P
    Quicken, P
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (02): : 473 - 485
  • [28] LOW-ENERGY LEVEL DISTRIBUTIONS OF LIGHT NUCLEI
    GADIOLI, E
    RECAMI, E
    ZETTA, L
    NUCLEAR PHYSICS A, 1969, A128 (01) : 339 - &
  • [29] Surviving on low-energy light comes at a price
    Romero, Elisabet
    ELIFE, 2022, 11
  • [30] Low-energy light project streets ahead
    不详
    POWER ENGINEER, 2007, 21 (03): : 5 - 5