ON GENERALIZED SKEW-COMMUTING MAPPINGS OF PRIME RINGS

被引:1
|
作者
Leerawat, Utsanee [1 ]
Lapuangkham, Siriporn [1 ]
机构
[1] Kasetsart Univ, Dept Math, Fac Sci, Bangkok, Thailand
关键词
skew-commuting map; additive map; semiprime ring; prime ring;
D O I
10.17654/NT046020133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. Two mappings f : R -> R and g : R -> R are said to be generalized skew-commuting on R if f (x) g(x) + g( x) f (x) = 0 for all x in R. The main purpose of this paper is to prove the following result, which generalizes the conjecture of Nadeem et al.: Let R be a 2-torsion free prime ring with g : R -> R a non-zero isomorphism or anti-isomorphism of R. If f and g are generalized skew-commuting on R, then f (x) = 0 for all x in R.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [41] On the structure of prime and semiprime rings with generalized skew derivations
    Argac, Nurcan
    De Filippis, Vincenzo
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (05)
  • [42] GENERALIZED SKEW DERIVATIONS WITH NILPOTENT VALUES IN PRIME RINGS
    Ali, Asma
    Ali, Shakir
    De Filippis, Vincenzo
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1606 - 1618
  • [43] Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
    De Filippis, V.
    Rania, F.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 748 - 758
  • [44] Commuting and centralizing generalized derivations on lie ideals in prime rings
    V. De Filippis
    F. Rania
    Mathematical Notes, 2010, 88 : 748 - 758
  • [45] Commuting product of generalized derivations on multilinear polynomials in prime rings
    Baydar Yarbil, Nihan
    De Filippis, Vincenzo
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (09): : 1697 - 1716
  • [46] PRIME AND SEMIPRIME RINGS INVOLVING MULTIPLICATIVE (GENERALIZED)-SKEW DERIVATIONS
    Boua, A.
    Ashraf, M.
    Abdelwanis, A. Y.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 89 - 104
  • [47] A result on generalized skew derivations on Lie ideals in prime rings
    Ashraf M.
    De Filippis V.
    Khan A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 341 - 354
  • [48] ON SKEW JORDAN PRODUCT AND GENERALIZED DERIVATIONS IN PRIME RINGS WITH INVOLUTION
    Malleswari, G. Naga
    Sreenivasulu, S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2024, 63 (04): : 329 - 334
  • [49] Hypercentralizing generalized skew derivations on left ideals in prime rings
    De Filippis, V.
    Di Vincenzo, O. M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 315 - 341
  • [50] Periodic and nilpotent values of generalized skew derivations on prime rings
    Andaloro, Milena
    Scudo, Giovanni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,