ON GENERALIZED SKEW-COMMUTING MAPPINGS OF PRIME RINGS

被引:1
|
作者
Leerawat, Utsanee [1 ]
Lapuangkham, Siriporn [1 ]
机构
[1] Kasetsart Univ, Dept Math, Fac Sci, Bangkok, Thailand
关键词
skew-commuting map; additive map; semiprime ring; prime ring;
D O I
10.17654/NT046020133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. Two mappings f : R -> R and g : R -> R are said to be generalized skew-commuting on R if f (x) g(x) + g( x) f (x) = 0 for all x in R. The main purpose of this paper is to prove the following result, which generalizes the conjecture of Nadeem et al.: Let R be a 2-torsion free prime ring with g : R -> R a non-zero isomorphism or anti-isomorphism of R. If f and g are generalized skew-commuting on R, then f (x) = 0 for all x in R.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [31] ON COMMUTING TRACES OF GENERALIZED BIDERIVATIONS OF PRIME RINGS
    Ali, Asma
    Shujat, Faiza
    Khan, Shahoor
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (34): : 123 - 132
  • [32] COMMUTATIVITY OF PRIME RINGS WITH GENERALIZED SKEW DERIVATIONS
    Ashraf, Mohammad
    Parveen, Nazia
    Pary, Sajad Ahmad
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (1-2): : 21 - 30
  • [33] The commutativity of prime Γ-rings with generalized skew derivations
    Huang, Shuliang
    Ali, Shakir
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (03) : 393 - 402
  • [34] N-commuting mappings on (semi)-prime rings with applications
    Ali, Shakir
    Ashraf, Mohammad
    Raza, Mohd Arif
    Khan, Abdul Nadim
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2262 - 2270
  • [35] SKEW POLYNOMIAL RINGS WHICH ARE GENERALIZED ASANO PRIME RINGS
    Marubayashi, H.
    Muchtadi-Alamsyah, Intan
    Ueda, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
  • [36] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [37] Generalized Centralizing and Skew-Centralizing Mappings on Rings
    Leerawat, Utsanee
    Lapuangkham, Siriporn
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (02): : 577 - 585
  • [38] Generalized skew derivations on Lie ideals in prime rings
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 219 - 225
  • [39] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225
  • [40] Generalized skew derivations on Lie ideals in prime rings
    Giovanni Scudo
    Ashutosh Pandey
    Balchand Prajapati
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)