ON GENERALIZED SKEW-COMMUTING MAPPINGS OF PRIME RINGS

被引:1
|
作者
Leerawat, Utsanee [1 ]
Lapuangkham, Siriporn [1 ]
机构
[1] Kasetsart Univ, Dept Math, Fac Sci, Bangkok, Thailand
关键词
skew-commuting map; additive map; semiprime ring; prime ring;
D O I
10.17654/NT046020133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring. Two mappings f : R -> R and g : R -> R are said to be generalized skew-commuting on R if f (x) g(x) + g( x) f (x) = 0 for all x in R. The main purpose of this paper is to prove the following result, which generalizes the conjecture of Nadeem et al.: Let R be a 2-torsion free prime ring with g : R -> R a non-zero isomorphism or anti-isomorphism of R. If f and g are generalized skew-commuting on R, then f (x) = 0 for all x in R.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Skew-commuting mappings on semiprime and prime rings
    Najati, Abbas
    Saem, M. Mohammadi
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 887 - 892
  • [2] Skew-commuting and commuting mappings in rings
    Park K.-H.
    Jung Y.-S.
    aequationes mathematicae, 2002, 64 (1-2) : 136 - 144
  • [4] On skew-commuting generalized skew derivations in prime and semiprime rings
    Carini, Luisa
    De Filippis, Vincenzo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (08)
  • [5] ON SKEW-COMMUTING MAPPINGS IN SEMIPRIME RINGS
    Fosner, Maja
    Marcen, Benjamin
    Rehman, Nadeem Ur
    MATHEMATICA SLOVACA, 2016, 66 (04) : 811 - 814
  • [6] Skew-commuting and Commuting Mappings in Rings with Left Identity
    Sharma R.K.
    Dhara B.
    Results in Mathematics, 2004, 46 (1-2) : 123 - 129
  • [7] A Note on Skew-commuting Automorphisms in Prime Rings
    Rehman, Nadeem Ur
    Bano, Tarannum
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 21 - 28
  • [8] ON m-COMMUTING MAPPINGS WITH SKEW DERIVATIONS IN PRIME RINGS
    Rehman, N.
    Raza, M. Arif
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (04) : 641 - 650
  • [9] Erratum to: “Skew-commuting and commuting mappings in rings” [Aequationes Math. 64 (2002), 136–144]
    Kyoo-Hong Park
    Yong-Soo Jung
    aequationes mathematicae, 2005, 70 (1-2) : 199 - 200
  • [10] ON GAMMA-RINGS WITH (sigma, tau)-SKEW-COMMUTING AND (sigma, tau)-SKEW-CENTRALIZING MAPPINGS
    Dey, Kalyan Kumar
    Paul, Akhil Chandra
    Davvaz, Bijan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (01): : 41 - 50