Approximate Bayesian network classifiers

被引:0
|
作者
Slezak, D [1 ]
Wróblewski, J [1 ]
机构
[1] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian network (BN) is a directed acyclic graph encoding probabilistic independence statements between variables. BN with decision attribute as a root can be applied to classification of new cases, by synthesis of conditional probabilities propagated along the edges. We consider approximate BNs, which almost keep entropy of a decision table. They have usually less edges than classical BNs. They enable to model and extend the well-known Naive Bayes approach. Experiments show that classifiers based on approximate BNs can be very efficient.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [41] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [42] Bayesian network classifiers for mineral potential mapping
    Porwal, A
    Carranza, EJM
    Hale, M
    [J]. COMPUTERS & GEOSCIENCES, 2006, 32 (01) : 1 - 16
  • [43] A Symbolic Approach to Explaining Bayesian Network Classifiers
    Shih, Andy
    Choi, Arthur
    Darwiche, Adnan
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5103 - 5111
  • [44] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [45] Aligning Bayesian Network Classifiers with Medical Contexts
    van der Gaag, Linda C.
    Renooij, Silja
    Feelders, Ad
    de Groote, Arend
    Eijkemans, Marinus J. C.
    Broekmans, Frank J.
    Fauser, Bart C. J. M.
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2009, 5632 : 787 - +
  • [46] Bayesian Network Model Averaging Classifiers by Subbagging
    Sugahara, Shouta
    Aomi, Itsuki
    Ueno, Maomi
    [J]. ENTROPY, 2022, 24 (05)
  • [47] Face detection by aggregated Bayesian network classifiers
    Pham, TV
    Worring, M
    Smeulders, AWM
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2001, 2123 : 249 - 262
  • [48] Learning continuous time Bayesian network classifiers
    Codecasa, Daniele
    Stella, Fabio
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1728 - 1746
  • [50] Bayesian network classifiers using ensembles and smoothing
    Zhang, He
    Petitjean, Francois
    Buntine, Wray
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (09) : 3457 - 3480