Approximate Bayesian network classifiers

被引:0
|
作者
Slezak, D [1 ]
Wróblewski, J [1 ]
机构
[1] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian network (BN) is a directed acyclic graph encoding probabilistic independence statements between variables. BN with decision attribute as a root can be applied to classification of new cases, by synthesis of conditional probabilities propagated along the edges. We consider approximate BNs, which almost keep entropy of a decision table. They have usually less edges than classical BNs. They enable to model and extend the well-known Naive Bayes approach. Experiments show that classifiers based on approximate BNs can be very efficient.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [41] Bayesian network classifiers for mineral potential mapping
    Porwal, A
    Carranza, EJM
    Hale, M
    [J]. COMPUTERS & GEOSCIENCES, 2006, 32 (01) : 1 - 16
  • [42] Decision Boundary for Discrete Bayesian Network Classifiers
    Varando, Gherardo
    Bielza, Concha
    Larranaga, Pedro
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 2725 - 2749
  • [43] On discriminative Bayesian network classifiers and logistic regression
    Roos T.
    Wettig H.
    Grünwald P.
    Myllymäki P.
    Tirri H.
    [J]. Machine Learning, 2005, 59 (03) : 267 - 296
  • [44] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [45] Adaptive learning algorithms for Bayesian network classifiers
    Departamento de Matemática, CEOC, Universidade de Aveiro, Aveiro 3810-193, Portugal
    [J]. AI Commun, 2008, 1 (87-88):
  • [46] A Symbolic Approach to Explaining Bayesian Network Classifiers
    Shih, Andy
    Choi, Arthur
    Darwiche, Adnan
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5103 - 5111
  • [47] Efficient parameter learning of Bayesian network classifiers
    Nayyar A. Zaidi
    Geoffrey I. Webb
    Mark J. Carman
    François Petitjean
    Wray Buntine
    Mike Hynes
    Hans De Sterck
    [J]. Machine Learning, 2017, 106 : 1289 - 1329
  • [48] Learning continuous time Bayesian network classifiers
    Codecasa, Daniele
    Stella, Fabio
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1728 - 1746
  • [49] Face detection by aggregated Bayesian network classifiers
    Pham, TV
    Worring, M
    Smeulders, AWM
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2001, 2123 : 249 - 262