Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices

被引:19
|
作者
Amerstorfer, U. V. [1 ]
Erkaev, N. V. [2 ,3 ]
Taubenschuss, U. [4 ]
Biernat, H. K. [1 ,5 ]
机构
[1] Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
VENUS IONOPAUSE; SIMULATION; SCHEMES;
D O I
10.1063/1.3453705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] KELVIN-HELMHOLTZ INSTABILITY OF FINITE AMPLITUDE
    DRAZIN, PG
    JOURNAL OF FLUID MECHANICS, 1970, 42 : 321 - &
  • [32] KELVIN-HELMHOLTZ INSTABILITY IN CLUSTERS OF GALAXIES
    LIVIO, M
    REGEV, O
    SHAVIV, G
    ASTROPHYSICAL JOURNAL, 1980, 240 (02): : L83 - L86
  • [33] Kelvin-Helmholtz instability of miscible ferrofluids
    Moatimid, GM
    ElDib, YO
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 425 - 443
  • [34] Kelvin-Helmholtz instability in Beltrami fields
    Ito, A
    Yoshida, Z
    Tatsuno, T
    Ohsaki, S
    Mahajan, SM
    PHYSICS OF PLASMAS, 2002, 9 (12) : 4856 - 4862
  • [35] Magnetic Effects on the Coalescence of Kelvin-Helmholtz Vortices
    Nakamura, T. K. M.
    Fujimoto, M.
    PHYSICAL REVIEW LETTERS, 2008, 101 (16)
  • [36] Kelvin-Helmholtz instability of stratified jets
    Hanasz, M
    Sol, H
    ASTRONOMY & ASTROPHYSICS, 1996, 315 (03) : 355 - 364
  • [37] Kelvin-Helmholtz instability in anisotropic superfluids
    T. Ruokola
    J. Kopu
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 634 - 638
  • [38] THE KELVIN-HELMHOLTZ INSTABILITY FOR A VISCOUS INTERFACE
    LINDSAY, KA
    ACTA MECHANICA, 1984, 52 (1-2) : 51 - 61
  • [39] KELVIN-HELMHOLTZ INSTABILITY OF RELATIVISTIC BEAMS
    BLANDFORD, RD
    PRINGLE, JE
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1976, 176 (02) : 443 - 454
  • [40] Kelvin-Helmholtz instability in NND scheme
    Wang, Lifeng
    Fan, Zhengfeng
    Ye, Wenhua
    Li, Yingjun
    Jisuan Wuli/Chinese Journal of Computational Physics, 2010, 27 (02): : 168 - 172