Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices

被引:19
|
作者
Amerstorfer, U. V. [1 ]
Erkaev, N. V. [2 ,3 ]
Taubenschuss, U. [4 ]
Biernat, H. K. [1 ,5 ]
机构
[1] Austrian Acad Sci, Inst Space Res, A-8042 Graz, Austria
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Inst Computat Modelling, Krasnoyarsk 660036, Russia
[4] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[5] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
VENUS IONOPAUSE; SIMULATION; SCHEMES;
D O I
10.1063/1.3453705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the Kelvin-Helmholtz instability in superfluids
    G. E. Volovik
    Journal of Experimental and Theoretical Physics Letters, 2002, 75 : 418 - 422
  • [22] Influence of Knudsen and Mach numbers on Kelvin-Helmholtz instability
    Mohan, Vishnu
    Sameen, A.
    Srinivasan, Balaji
    Girimaji, Sharath S.
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [23] Influence of Cross Perturbations on Turbulent Kelvin-Helmholtz Instability
    Sementilli, Mae
    Zangeneh, Rozie
    Chen, James
    FLUIDS, 2024, 9 (03)
  • [24] Influence of Resonant Absorption on the Generation of the Kelvin-Helmholtz Instability
    Antolin, Patrick
    Van Doorsselaere, Tom
    FRONTIERS IN PHYSICS, 2019, 7 (JUN):
  • [25] THE ROLE OF A DENSITY JUMP IN THE KELVIN-HELMHOLTZ INSTABILITY OF A COMPRESSIBLE PLASMA
    GONZALEZ, AG
    GRATTON, J
    JOURNAL OF PLASMA PHYSICS, 1994, 52 : 223 - 244
  • [26] Electrohydrodynamic Kelvin-Helmholtz instability conditions in media of variable density
    El-Sayed, MF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (11): : 1645 - 1658
  • [27] The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity
    Orazzo, Annagrazia
    Hoepffner, Jerome
    PHYSICS OF FLUIDS, 2012, 24 (11)
  • [28] Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma
    Lai, SH
    Lyu, LH
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A1)
  • [29] Evolution of Kelvin-Helmholtz Instability in the Fan-spine Topology
    Mishra, Sudheer K.
    Singh, Balveer
    Srivastava, A. K.
    Kayshap, Pradeep
    Dwivedi, B. N.
    ASTROPHYSICAL JOURNAL, 2021, 923 (01):
  • [30] The Kelvin-Helmholtz instability at Mercury: An assessment
    Sundberg, T.
    Boardsen, S. A.
    Slavin, J. A.
    Blomberg, L. G.
    Korth, H.
    PLANETARY AND SPACE SCIENCE, 2010, 58 (11) : 1434 - 1441