II-VI resonant cavity light emitting diodes for the mid-infrared

被引:0
|
作者
Bleuse, J
Hadji, E
Magnea, N
Pautrat, JL
机构
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A CdHgTe low-Q resonant cavity light emitting diode is proposed as a new infrared light source. The device consists of a bottom Bragg reflector, a half-wavelength cavity containing an active layer at the antinode position, n-doped with indium on one end and p-doped with nitrogen on the other, and a 0.95 reflectance top gold mirror which also serves as an ohmic contact. The emission spectra at room temperature show a narrow peak, the full width at half maximum (FWHM) of which is much less than the natural emission peak FWHM of CdHgTe quantum wells. The emission directivity is shown to be improved by the cavity effect. The room temperature external quantum efficiency (EQE) reaches 2 . 10(-4) at 3.2 mu m and 2.5 . 10(-4) at 4.1 mu m. Infrared emitters in the 3-5 mu m wavelength range can therefore benefit from the enhanced spectral, spatial and temperature characteristics of resonant microcavities.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [1] Mid-infrared resonant cavity light emitting diodes operating at 4.5 μm
    Al-Saymari, Furat A.
    Craig, Adam P.
    Lu, Qi
    Marshall, Andrew R. J.
    Carrington, Peter J.
    Krier, Anthony
    [J]. OPTICS EXPRESS, 2020, 28 (16): : 23338 - 23353
  • [2] Electroluminescence enhancement in mid-infrared InAsSb resonant cavity light emitting diodes for CO2 detection
    Al-Saymari, Furat A.
    Craig, Adam P.
    Noori, Yasir J.
    Lu, Qi
    Marshall, Andrew R. J.
    Krier, Anthony
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (17)
  • [3] Mid-infrared rainbow light-emitting diodes
    Muhowski, Aaron J.
    Kamboj, Abhilasha
    Mansfield, Noah C.
    Wasserman, Daniel
    [J]. APPLIED PHYSICS LETTERS, 2022, 121 (26)
  • [4] Microcavity enhancement vs Auger recombination in variable thickness type-II superlattices in resonant cavity mid-infrared light emitting diodes
    Schrock, K. N.
    Montealegre, D. A.
    Dai, W.
    Bellus, M. Z.
    Nichols, L. M.
    Prineas, J. P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2024, 135 (18)
  • [5] TM2+ : II-VI Mid-Infrared Materials
    Chen Yuanzhi
    Zhang Le
    Huang Cunxin
    Zhang Jian
    Tang Dingyuan
    Shen Deyuan
    [J]. PROGRESS IN CHEMISTRY, 2015, 27 (05) : 511 - 521
  • [6] Alternative materials for II-VI light emitting diodes and lasers
    Landwehr, G
    Waag, A
    [J]. BLUE LASER AND LIGHT EMITTING DIODES, 1996, : 17 - 22
  • [7] GaInAsPSb/GaSb heterostructures for mid-infrared light emitting diodes
    Smirnov, V. M.
    Batty, P. J.
    Jones, R.
    Krier, A.
    Vasil'ev, V. I.
    Gagis, G. S.
    Kuchinskii, V. I.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (04): : 1047 - 1050
  • [8] Broadband mid-infrared superlattice light-emitting diodes
    Ricker, R. J.
    Provence, S. R.
    Norton, D. T.
    Boggess, T. F., Jr.
    Prineas, J. P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (18)
  • [9] Multispectral mid-infrared light emitting diodes on a GaAs substrate
    Aziz, Mohsin
    Xie, Chengzhi
    Pusino, Vincenzo
    Khalid, Ata
    Steer, Matthew
    Thayne, Iain G.
    Cumming, David R. S.
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (10)
  • [10] Physics and technology of mid-infrared light emitting diodes - Discussion
    Simecek, T
    Krier, A
    Phillips, C
    Krier, A
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1780): : 619 - 619