We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n(1),..., n(m), n(m)+1 = n(1), and any nonnegative integer r, there holds Sigma(n1)(k-0) epsilon(k)(2k + 1)(2r+1) Pi(m)(i=1) ((ni + ni+ 1+1)(ni - k)) equivalent to 0 (mod (n(1) + n(m) + 1) ((n1) (n1+nm))), and conjecture that for any nonnegative integer r and positive integer s such that r + s is odd, Sigma(n)(k=0) epsilon(k) (2k + 1)(r) (((2n)(n - k)) - ((2n)(n - k - 1)))(s) equivalent to 0 (mod ((2n)(n))), where epsilon = +/- 1.
机构:
Zhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China
Univ Salento, Dept Math & Phys, POB 193, I-73100 Lecce, ItalyZhoukou Normal Univ, Sch Math & Stat, Zhoukou, Henan, Peoples R China
机构:
Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
Zhoukou Normal Univ, Zhoukou 466001, Peoples R ChinaDalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
Yang, Jin-Hua
Zhao, Feng-Zhen
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R ChinaDalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
机构:
Zhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Zhejiang, Peoples R ChinaZhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
Shen, Zhongyan
Cai, Tianxin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China