FACTORS OF SUMS AND ALTERNATING SUMS INVOLVING BINOMIAL COEFFICIENTS AND POWERS OF INTEGERS

被引:5
|
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69622 Villeurbanne, France
基金
美国国家科学基金会;
关键词
Binomial coefficients; divisibility properties; Chu-Vandermonde formula; Lucas' theorem; GENERATING FUNCTION; JACOBI-POLYNOMIALS; CATALAN TRIANGLE; NUMBERS;
D O I
10.1142/S1793042111004812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n(1),..., n(m), n(m)+1 = n(1), and any nonnegative integer r, there holds Sigma(n1)(k-0) epsilon(k)(2k + 1)(2r+1) Pi(m)(i=1) ((ni + ni+ 1+1)(ni - k)) equivalent to 0 (mod (n(1) + n(m) + 1) ((n1) (n1+nm))), and conjecture that for any nonnegative integer r and positive integer s such that r + s is odd, Sigma(n)(k=0) epsilon(k) (2k + 1)(r) (((2n)(n - k)) - ((2n)(n - k - 1)))(s) equivalent to 0 (mod ((2n)(n))), where epsilon = +/- 1.
引用
收藏
页码:1959 / 1976
页数:18
相关论文
共 50 条