SPARSE SLICED INVERSE REGRESSION VIA CHOLESKY MATRIX PENALIZATION

被引:1
|
作者
Nghiem, Linh H. [1 ,5 ]
Hui, Francis K. C. [3 ]
Muller, Samuel [2 ,4 ]
Welsh, A. H. [3 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Acton, ACT 2600, Australia
[4] Macquarie Univ, Sch Math & Phys Sci, Sydney, NSW 2109, Australia
[5] Macquarie Univ, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Cholesky decomposition; information criterion; Lasso; spar-sity; sufficient dimension reduction; PRINCIPAL HESSIAN DIRECTIONS; DIMENSION REDUCTION; ADAPTIVE LASSO;
D O I
10.5705/ss.202020.0406
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new sparse sliced inverse regression estimator called Cholesky matrix penalization, and its adaptive version, for achieving sparsity when estimating the dimensions of a central subspace. The new estimators use the Cholesky decomposition of the covariance matrix of the covariates and include a regularization term in the objective function to achieve sparsity in a computation-ally efficient manner. We establish the theoretical values of the tuning parameters that achieve estimation and variable selection consistency for the central subspace. Furthermore, we propose a new projection information criterion to select the tuning parameter for our proposed estimators, and prove that the new criterion facilitates selection consistency. The Cholesky matrix penalization estimator inherits the ad-vantages of the matrix lasso and the lasso sliced inverse regression estimator. Fur-thermore, it shows superior performance in numerical studies and can be extended to other sufficient dimension reduction methods in the literature.
引用
收藏
页码:2431 / 2453
页数:23
相关论文
共 50 条
  • [1] Sparse Sliced Inverse Regression via Lasso
    Lin, Qian
    Zhao, Zhigen
    Liu, Jun S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) : 1726 - 1739
  • [2] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    [J]. TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [3] Distributed Sparse Regression via Penalization
    Ji, Yao
    Scutari, Gesualdo
    Sun, Ying
    Honnappa, Harsha
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [4] Sparse sliced inverse regression for high dimensional data analysis
    Hilafu, Haileab
    Safo, Sandra E.
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [5] Sparse sliced inverse regression for high dimensional data analysis
    Haileab Hilafu
    Sandra E. Safo
    [J]. BMC Bioinformatics, 23
  • [6] A convex formulation for high-dimensional sparse sliced inverse regression
    Tan, Kean Ming
    Wang, Zhaoran
    Zhang, Tong
    Liu, Han
    Cook, R. Dennis
    [J]. BIOMETRIKA, 2018, 105 (04) : 769 - 782
  • [7] Sliced inverse regression via natural canonical thresholding
    Asrir, Nadia
    Mkhadri, Abdallah
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [8] Estimation of covariance matrix via the sparse Cholesky factor with lasso
    Chang, Changgee
    Tsay, Ruey S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3858 - 3873
  • [9] Reference curve estimation via alternating sliced inverse regression
    Gannoun, A
    Guinot, C
    Saracco, K
    [J]. ENVIRONMETRICS, 2004, 15 (01) : 81 - 99
  • [10] Collaborative sliced inverse regression
    Chiancone, Alessandro
    Girard, Stephane
    Chanussot, Jocelyn
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6035 - 6053