Sparse Sliced Inverse Regression via Lasso

被引:49
|
作者
Lin, Qian [1 ,2 ]
Zhao, Zhigen [3 ]
Liu, Jun S. [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Ctr Stat Sci, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
[3] Temple Univ, Dept Stat Sci, Philadelphia, PA 19122 USA
[4] Harvard Univ, Dept Stat, 1 Oxford St, Cambridge, MA 02138 USA
关键词
Dimension reduction; High dimensional statistics; Minimax; Theory of large deviation; VARIABLE SELECTION; DIMENSION REDUCTION; INDEX MODELS; CONSISTENCY; SHRINKAGE; PURSUIT;
D O I
10.1080/01621459.2018.1520115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For multiple index models, it has recently been shown that the sliced inverse regression (SIR) is consistent for estimating the sufficient dimension reduction (SDR) space if and only if , where p is the dimension and n is the sample size. Thus, when p is of the same or a higher order of n, additional assumptions such as sparsity must be imposed in order to ensure consistency for SIR. By constructing artificial response variables made up from top eigenvectors of the estimated conditional covariance matrix, we introduce a simple Lasso regression method to obtain an estimate of the SDR space. The resulting algorithm, Lasso-SIR, is shown to be consistent and achieves the optimal convergence rate under certain sparsity conditions when p is of order , where lambda is the generalized signal-to-noise ratio. We also demonstrate the superior performance of Lasso-SIR compared with existing approaches via extensive numerical studies and several real data examples. for this article are available online.
引用
收藏
页码:1726 / 1739
页数:14
相关论文
共 50 条
  • [1] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    [J]. TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [2] SPARSE SLICED INVERSE REGRESSION VIA CHOLESKY MATRIX PENALIZATION
    Nghiem, Linh H.
    Hui, Francis K. C.
    Muller, Samuel
    Welsh, A. H.
    [J]. STATISTICA SINICA, 2022, 32 : 2431 - 2453
  • [3] SLICED INVERSE REGRESSION (SIR) WITH ROBUST GROUP LASSO
    Al-Sabbah, Shrook A. S.
    Mohammed, Laith Ali
    Raheem, Saif Hosam
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 359 - 363
  • [4] Sparse sliced inverse regression for high dimensional data analysis
    Hilafu, Haileab
    Safo, Sandra E.
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [5] Sparse sliced inverse regression for high dimensional data analysis
    Haileab Hilafu
    Sandra E. Safo
    [J]. BMC Bioinformatics, 23
  • [6] A convex formulation for high-dimensional sparse sliced inverse regression
    Tan, Kean Ming
    Wang, Zhaoran
    Zhang, Tong
    Liu, Han
    Cook, R. Dennis
    [J]. BIOMETRIKA, 2018, 105 (04) : 769 - 782
  • [7] Sliced inverse regression via natural canonical thresholding
    Asrir, Nadia
    Mkhadri, Abdallah
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [8] Reference curve estimation via alternating sliced inverse regression
    Gannoun, A
    Guinot, C
    Saracco, K
    [J]. ENVIRONMETRICS, 2004, 15 (01) : 81 - 99
  • [9] Collaborative sliced inverse regression
    Chiancone, Alessandro
    Girard, Stephane
    Chanussot, Jocelyn
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6035 - 6053
  • [10] Online sparse sliced inverse regression for high-dimensional streaming data
    Xu, Jianjun
    Cui, Wenquan
    Cheng, Haoyang
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (02)