A comparative study on multiscale fractal dimension descriptors

被引:31
|
作者
Florindo, J. B. [1 ]
Backes, A. R. [2 ]
de Castro, M. [3 ]
Bruno, O. M. [1 ]
机构
[1] Univ Sao Paulo, IFSC, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Uberlandia, Fac Comp, BR-38408100 Uberlandia, MG, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Multiscale fractal dimension; Functional Data Analysis; Fractal descriptors; Pattern recognition; FUNCTIONAL DATA; TEXTURE; RECOGNITION;
D O I
10.1016/j.patrec.2011.12.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:798 / 806
页数:9
相关论文
共 50 条
  • [1] Multiscale Fractal Descriptors Applied to Nanoscale Images
    Florindo, Joao B.
    Sikora, Mariana S.
    Pereira, Ernesto C.
    Bruno, Odemir M.
    [J]. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (07) : 2479 - 2484
  • [2] Multiscale Fractal Descriptors Applied to Texture Classification
    Florindo, Joao Batista
    Bruno, Odemir Martinez
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [3] Multiscale Fractal Descriptors Applied to Nanoscale Images
    João B. Florindo
    Mariana S. Sikora
    Ernesto C. Pereira
    Odemir M. Bruno
    [J]. Journal of Superconductivity and Novel Magnetism, 2013, 26 : 2479 - 2484
  • [4] A comparative study of fractal dimension estimation for speech
    Fekkai, S
    Al-Akaidi, M
    Blackledge, J
    [J]. SIMULATION AND MODELLING: ENABLERS FOR A BETTER QUALITY OF LIFE, 2000, : 676 - 680
  • [5] Comparative study of methods to determine Fractal dimension
    Zode, Juil J.
    Choudhari, Pranali C.
    Uparkar, Mahesh
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 441 - 446
  • [6] Multiscale Higuchi’s fractal dimension method
    A. Yilmaz
    G. Unal
    [J]. Nonlinear Dynamics, 2020, 101 : 1441 - 1455
  • [7] Multiscale Higuchi's fractal dimension method
    Yilmaz, A.
    Unal, G.
    [J]. NONLINEAR DYNAMICS, 2020, 101 (02) : 1441 - 1455
  • [8] Fractal dimension estimation with persistent homology: A comparative study
    Jaquette, Jonathan
    Schweinhart, Benjamin
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [9] ENHANCING MULTISCALE FRACTAL DESCRIPTORS USING FUNCTIONAL DATA ANALYSIS
    Florindo, Joao Batista
    De Castro, Mario
    Bruno, Odemir Martinez
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (11): : 3443 - 3460
  • [10] Fractal Descriptors of Texture Images Based on the Triangular Prism Dimension
    Florindo, Joao Batista
    Bruno, Odemir Martinez
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (01) : 140 - 159