Fractal dimension estimation with persistent homology: A comparative study

被引:12
|
作者
Jaquette, Jonathan [1 ]
Schweinhart, Benjamin [2 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02453 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Persistent homology; Fractal dimension; Chaotic attractors; Topological data analysis; MINIMAL SPANNING-TREES; STRANGE; ATTRACTORS; ALGORITHM; TOPOLOGY;
D O I
10.1016/j.cnsns.2019.105163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose that the recently defined persistent homology dimensions are a practical tool for fractal dimension estimation of point samples. We implement an algorithm to estimate the persistent homology dimension, and compare its performance to classical methods to compute the correlation and box-counting dimensions in examples of self-similar fractals, chaotic attractors, and an empirical dataset. The performance of the 0-dimensional persistent homology dimension is comparable to that of the correlation dimension, and better than box-counting. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A comparative study of fractal dimension estimation for speech
    Fekkai, S
    Al-Akaidi, M
    Blackledge, J
    [J]. SIMULATION AND MODELLING: ENABLERS FOR A BETTER QUALITY OF LIFE, 2000, : 676 - 680
  • [2] Fractal dimension and the persistent homology of random geometric complexes
    Schweinhart, Benjamin
    [J]. ADVANCES IN MATHEMATICS, 2020, 372
  • [3] Comparative Evaluation of Various Fractal Dimension Estimation Methods
    Lehamel, Malha
    Hammouche, Kamal
    [J]. 8TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS 2012), 2012, : 259 - 266
  • [4] A comparative study on estimation of fractal dimension of EMG signal using SWT and FLP
    Navish, A. A.
    Priya, M.
    Uthayakumar, R.
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (03): : 586 - 597
  • [5] Study the accuracy of the correlation fractal dimension estimation
    Kolyukhin, Dmitriy
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (01) : 219 - 233
  • [6] A comparative study on multiscale fractal dimension descriptors
    Florindo, J. B.
    Backes, A. R.
    de Castro, M.
    Bruno, O. M.
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (06) : 798 - 806
  • [7] Comparative study of methods to determine Fractal dimension
    Zode, Juil J.
    Choudhari, Pranali C.
    Uparkar, Mahesh
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 441 - 446
  • [8] On fractal dimension estimation
    Panek, David
    Kropik, Petr
    Predota, Antonin
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 120 - 122
  • [9] Persistent Homology and the Upper Box Dimension
    Benjamin Schweinhart
    [J]. Discrete & Computational Geometry, 2021, 65 : 331 - 364
  • [10] Persistent Homology and the Upper Box Dimension
    Schweinhart, Benjamin
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (02) : 331 - 364