Synergic coating and doping effects of Ti-modified integrated layered-spinel Li1.2Mn0.75Ni0.25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries

被引:40
|
作者
Ngoc Hung Vu [1 ]
Im, Jong Chan [1 ]
Unithrattil, Sanjith [1 ]
Im, Won Bin [1 ]
机构
[1] Chonnam Natl Univ, Sch Mat Sci & Engn, Optoelect Convergence Res Ctr, 77 Yongbong Ro, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
NICKEL-MANGANESE OXIDES; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; RICH CATHODES; HIGH-VOLTAGE; CO; ELECTRODES; STABILITY; ENERGY; MG;
D O I
10.1039/c7ta09118d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An integrated layered-spinel material with a nominal composition of (1 - x) Li1.2Mn0.6Ni0.2O2 center dot xLiMn(1.5)Ni(0.5)O(4) (0.15 < x < 0.3) and crystal defects has been found to be a promising cathode material with a high capacity of 280 mA h g(-1). However, capacity fading arising from Mn2+ dissolution occurred at low voltages and long cycling times. To improve the cycling stability while preserving the advantages of this cathode material, a synergic coating and doping approach was studied. This method yields a coating with a similar, but more stable, structure to that of the pristine sample. This coating is achieved by the bulk doping of the surface while maintaining the ratio of layered to spinel phases. The coating layer had a thickness of 12 to 18 nm, which increased with increasing Ti doping, and protected the sample at low voltages while maintaining the ion and charge transport channels on the surface. The Ti-doped sample enhanced the capacity retention by up to 97% after 100 cycles at C/10 and 89% after 200 cycles at 1C compared to 75% and 74% of the pristine sample, respectively. The optimized sample delivered a stable capacity of 270, 250, and 145 mA h g(-1) at C/20, C/10, and 1C respectively. This study provides an effective approach to improve the cycling performance of integrated spinel-layered cathode materials.
引用
收藏
页码:2200 / 2211
页数:12
相关论文
共 50 条
  • [31] Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping
    Lu, Chao
    Yang, Shiqing
    Wu, Hao
    Zhang, Yun
    Yang, Xingjiang
    Liang, Taohua
    ELECTROCHIMICA ACTA, 2016, 209 : 448 - 455
  • [32] Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries
    Wang, Zhiyuan
    Liu, Enzuo
    He, Chunnian
    Shi, Chunsheng
    Li, Jiajun
    Zhao, Naiqin
    JOURNAL OF POWER SOURCES, 2013, 236 : 25 - 32
  • [33] Li1.2Ni0.25Mn0.55O2: A high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure
    Wu, Zhi-Liang
    Xie, Hanjie
    Li, Yingzi
    Zhang, Fangchang
    Wang, Zhenyu
    Zheng, Wei
    Yang, Mingyang
    Xu, Zhenghe
    Lu, Zhouguang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
  • [34] An enhanced electrochemical properties of novel tin based layered Li(Ni-Sn-Mn)O2 cathode material for rechargeable Li-ion batteries
    Kumar, Gopika G.
    Kumaraguru, S.
    Partheeban, T.
    Sasidharan, M.
    Kumaran, V
    Rajkumar, P.
    Subadevi, R.
    Sivakumar, M.
    Gnanamuthu, R. M.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [35] Effect of FePO4 Coating on Performance of Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Material for Li-ion Battery
    Li Zhong
    Hong Jian-He
    He Gang
    Lu Lu
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (02) : 129 - 134
  • [36] Effect of fepo4 coating on performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery
    Li, Zhong
    Hong, Jian-He
    He, Gang
    LÜ, Lu
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30 (02): : 129 - 134
  • [37] Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries
    Kim, Hyo-Jin
    Jung, Hun-Gi
    Scrosati, Bruno
    Sun, Yang-Kook
    JOURNAL OF POWER SOURCES, 2012, 203 : 115 - 120
  • [38] Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries
    Chen, J. J.
    Li, Z. D.
    Xiang, H. F.
    Wu, W. W.
    Guo, X.
    Wu, Y. C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (04) : 1027 - 1035
  • [39] Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries
    J. J. Chen
    Z. D. Li
    H. F. Xiang
    W. W. Wu
    X. Guo
    Y. C. Wu
    Journal of Solid State Electrochemistry, 2015, 19 : 1027 - 1035
  • [40] Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2
    Rastgoo-Deylami, Mohadese
    Javanbakht, Mehran
    Omidvar, Hamid
    SOLID STATE IONICS, 2019, 331 : 74 - 88