Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries

被引:0
|
作者
J. J. Chen
Z. D. Li
H. F. Xiang
W. W. Wu
X. Guo
Y. C. Wu
机构
[1] Hefei University of Technology,Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, School of Materials Science and Engineering
[2] Anqing Normal University,Department of Chemistry & Chemical Engineering
关键词
Lithium-rich layered oxide; Carbon coating; Lithium-ion batteries;
D O I
暂无
中图分类号
学科分类号
摘要
Coating the Li-rich layered oxide cathode Li1.2Ni0.13Co0.13Mn0.54O2 with small amount of conductive carbon is realized by low-temperature sucrose carbonization in air. Carbon coating gives rise to a small amount of Mn3+ on the surface of the Li1.2Ni0.13Co0.13Mn0.54O2. The 1.2 wt% carbon-coated Li1.2Ni0.13Co0.13Mn0.54O2 shows obviously enhanced electrochemical performances, especially in improving rate capability and suppressing the voltage fading during long-term and high-rate cycling. According to the analysis from cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the improvements on the electrochemical performances are mainly because the coated carbon layer can function by not only increasing the electronic conductivity at the interface with electrolyte but also improving bulk electronic and ionic conductivity by small amounts of Mn3+. Therefore, carbon coating is a promising approach to improve the cyclic stability of the Li-rich layered oxides.
引用
收藏
页码:1027 / 1035
页数:8
相关论文
共 50 条
  • [1] Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries
    Chen, J. J.
    Li, Z. D.
    Xiang, H. F.
    Wu, W. W.
    Guo, X.
    Wu, Y. C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (04) : 1027 - 1035
  • [2] Li1.2Ni0.13Co0.13Mn0.54O2 of Al2O3-coating cathode for high-performance lithium-ion batteries
    Zhang, Zhiqi
    Lai, Xianxin
    Fan, Kaibo
    Liu, Song
    Chai, Lili
    Zhu, Zhongheng
    Sun, Ling
    Zhou, Zhehui
    Wang, Li
    Hu, Zhengguang
    Zhao, Yong
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (03)
  • [3] Li1.2Ni0.13Co0.13Mn0.54O2 with Controllable Morphology and Size for High Performance Lithium-Ion Batteries
    Wang, Gang
    Yi, Liling
    Yu, Ruizhi
    Wang, Xianyou
    Wang, Yu
    Liu, Zhongshu
    Wu, Bing
    Liu, Min
    Zhang, Xiaohui
    Yang, Xiukang
    Xiong, Xunhui
    Liu, Meilin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) : 25358 - 25368
  • [4] Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery
    Jian Gao
    Zhenlei Huang
    Jianjun Li
    Xiangming He
    Changyin Jiang
    Ionics, 2014, 20 : 301 - 307
  • [5] Effect of Na Doping on the Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode for Lithium-Ion Batteries
    Hashem, Ahmed M.
    Abdel-Ghany, Ashraf E.
    El-Tawil, Rasha S.
    Mauger, Alain
    Julien, Christian M.
    SUSTAINABLE CHEMISTRY, 2022, 3 (02): : 131 - 148
  • [6] Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery
    Gao, Jian
    Huang, Zhenlei
    Li, Jianjun
    He, Xiangming
    Jiang, Changyin
    IONICS, 2014, 20 (03) : 301 - 307
  • [7] Enhanced structural and electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode with polyaniline polymer for lithium-ion batteries
    Lai, Xiangwan
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Wang, Weigang
    Du, Ke
    IONICS, 2022, 28 (07) : 3113 - 3125
  • [8] Enhanced structural and electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode with polyaniline polymer for lithium-ion batteries
    Xiangwan Lai
    Guorong Hu
    Zhongdong Peng
    Yanbing Cao
    Weigang Wang
    Ke Du
    Ionics, 2022, 28 : 3113 - 3125
  • [9] Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries
    Xinping Huang
    Zhengyu Zhang
    Jielong He
    Zhe Bai
    Lu Lu
    Jun Li
    Journal of Materials Science, 2021, 56 : 9836 - 9851
  • [10] Effects of chromium/fluorine co-doping on the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries
    Huang, Xinping
    Zhang, Zhengyu
    He, Jielong
    Bai, Zhe
    Lu, Lu
    Li, Jun
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (16) : 9836 - 9851