Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries

被引:0
|
作者
J. J. Chen
Z. D. Li
H. F. Xiang
W. W. Wu
X. Guo
Y. C. Wu
机构
[1] Hefei University of Technology,Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, School of Materials Science and Engineering
[2] Anqing Normal University,Department of Chemistry & Chemical Engineering
关键词
Lithium-rich layered oxide; Carbon coating; Lithium-ion batteries;
D O I
暂无
中图分类号
学科分类号
摘要
Coating the Li-rich layered oxide cathode Li1.2Ni0.13Co0.13Mn0.54O2 with small amount of conductive carbon is realized by low-temperature sucrose carbonization in air. Carbon coating gives rise to a small amount of Mn3+ on the surface of the Li1.2Ni0.13Co0.13Mn0.54O2. The 1.2 wt% carbon-coated Li1.2Ni0.13Co0.13Mn0.54O2 shows obviously enhanced electrochemical performances, especially in improving rate capability and suppressing the voltage fading during long-term and high-rate cycling. According to the analysis from cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the improvements on the electrochemical performances are mainly because the coated carbon layer can function by not only increasing the electronic conductivity at the interface with electrolyte but also improving bulk electronic and ionic conductivity by small amounts of Mn3+. Therefore, carbon coating is a promising approach to improve the cyclic stability of the Li-rich layered oxides.
引用
收藏
页码:1027 / 1035
页数:8
相关论文
共 50 条
  • [31] Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries
    Chen, J. J.
    Li, Z. D.
    Xiang, H. F.
    Wu, W. W.
    Cheng, S.
    Zhang, L. J.
    Wang, Q. S.
    Wu, Y. C.
    RSC ADVANCES, 2015, 5 (04): : 3031 - 3038
  • [32] Nano-Al2O3 Coated Li-rich Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2 for Highly Improved Lithium-ion Batteries
    Chen, Liangdan
    Zou, Wei
    Wu, Liang
    Xia, Fanjie
    Hu, Zhiyi
    Li, Yu
    Su, Baolian
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (06): : 1329 - 1336
  • [33] Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets with porous structure as a high-performance cathode material for lithium-ion batteries
    Gao, Zhi
    Sun, Wenliang
    Pan, Xiaoliang
    Xie, Shikun
    Liu, Lijun
    Xie, Chengning
    Yuan, Huiling
    RSC ADVANCES, 2021, 11 (58) : 36588 - 36595
  • [34] Effect of FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries
    Jielong He
    Zhe Bai
    Xinping Huang
    Zhengyu Zhang
    Lu Lu
    Jun Li
    Journal of Solid State Electrochemistry, 2023, 27 : 171 - 182
  • [35] Effect of FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries
    He, Jielong
    Bai, Zhe
    Huang, Xinping
    Zhang, Zhengyu
    Lu, Lu
    Li, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (01) : 171 - 182
  • [36] A Novel Perovskite Electron-Ion Conductive Coating to Simultaneously Enhance Cycling Stability and Rate Capability of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode Material for Lithium-Ion Batteries
    Gao, Mingxi
    Yan, Chenhui
    Shao, Qinong
    Chen, Jian
    Zhang, Chenyang
    Chen, Gairong
    Jiang, Yinzhu
    Zhu, Tiejun
    Sun, Wenping
    Liu, Yongfeng
    Gao, Mingxia
    Pan, Hongge
    SMALL, 2021, 17 (19)
  • [37] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by In2O3 coating
    Zhou, Sisi
    Zhang, Zhihao
    Wang, Huanwen
    He, Beibei
    Gong, Yansheng
    Jin, Jun
    Zhang, Xianggong
    Wang, Rui
    IONICS, 2023, 29 (04) : 1323 - 1334
  • [38] Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by In2O3 coating
    Sisi Zhou
    Zhihao Zhang
    Huanwen Wang
    Beibei He
    Yansheng Gong
    Jun Jin
    Xianggong Zhang
    Rui Wang
    Ionics, 2023, 29 : 1323 - 1334
  • [39] Oxalate precursor preparation of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery positive electrode
    Zhao, Chenhao
    Wang, Xinxin
    Liu, Rui
    Liu, Xinru
    Shen, Qiang
    IONICS, 2014, 20 (05) : 645 - 652
  • [40] Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating
    Du, Zhuolin
    Peng, Wenjie
    Wang, Zhixing
    Guo, Huajun
    Hu, Qiyang
    Li, Xinhai
    IONICS, 2018, 24 (12) : 3717 - 3724