The Neumann and Robin problems for the Korteweg-de Vries equation on the half-line

被引:7
|
作者
Himonas, A. Alexandrou [1 ]
Madrid, Carlos [1 ]
Yan, Fangchi [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; BOUNDARY-VALUE-PROBLEM; GLOBAL WELL-POSEDNESS; TRANSFORM METHOD; DEVRIES EQUATION; EVOLUTION; FOKAS; KDV;
D O I
10.1063/5.0064147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The well-posedness of the Neumann and Robin problems for the Korteweg-de Vries equation is studied with data in Sobolev spaces. Using the Fokas unified transform method, the corresponding linear problems with forcing are solved and solution estimates are derived. Then, using these, an iteration map is defined, and it is proved to be a contraction in appropriate solution spaces after the needed bilinear estimates are derived.</p>
引用
收藏
页数:24
相关论文
共 50 条
  • [31] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [32] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    [J]. NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [33] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [34] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [35] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [36] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    [J]. PHYSICAL REVIEW D, 2012, 86 (12)
  • [37] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [38] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [39] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [40] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610