Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss

被引:12
|
作者
Shafee, Ahmad [1 ]
Arabkoohsar, A. [2 ]
Sheikholeslami, M. [3 ,4 ]
Jafaryar, M. [4 ]
Ayani, M. [5 ]
Trung Nguyen-Thoi [6 ,7 ]
Basha, D. Baba [8 ]
Tlili, I [9 ]
Li, Zhixiong [10 ,11 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
[3] Babol Noshirvani Univ Technol, Dept Mech Engn, Babol Sar, Iran
[4] Babol Noshirvani Univ Technol, Renewable Energy Syst & Nanofluid Applicat Heat T, Babol Sar, Iran
[5] KN Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
[6] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City 700000, Vietnam
[7] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City 700000, Vietnam
[8] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah 11952, Saudi Arabia
[9] Majmaah Univ, Coll Engn, Dept Mech & Ind Engn, Al Majmaah 11952, Saudi Arabia
[10] Ocean Univ China, Sch Engn, Qingdao 266110, Peoples R China
[11] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Wollongong, NSW 2522, Australia
关键词
Numerical method; Forced convection; Nanofluid; Exergy; New turbulator; FVM; HEAT-TRANSFER CHARACTERISTICS; POROUS-MEDIUM; TWISTED TAPE; NANOPARTICLES; TURBULATOR; EFFICIENCY; LAMINAR; PCM;
D O I
10.1016/j.physa.2019.122161
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Helical turbulator has been adopted in this article, to enhance the convective flow within a pipe. Homogeneous model was carried out for nanomaterial modeling. The Reynolds number (Re) and width of turbulator (b) vary from 5000 to 15000 and 5 to 15mm, respectively. Copper oxide nanoparticles were considered as an additive in to pure carrier fluid to gain better thermal behavior. Furthermore, exergy loss distributions for different cases have been reported. Outputs indicate that disturbance of the boundary layer enhances with rise of b. Mixing of core nanofluid flow and boundary layer enhances with augment of width of turbulator. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Turbulent Flow Numerical Simulation for Unconventional Propulsion
    Scurtu, Ionut Cristian
    Panaitescu, Valeriu Nicolae
    [J]. REVISTA DE CHIMIE, 2019, 70 (10): : 3508 - 3511
  • [42] Numerical simulation of a turbulent flow in the Francis hydroturbine
    Cherny, S. G.
    Chirkov, D. V.
    Lapin, V. N.
    Skorospelov, V. A.
    Turuk, P. A.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2006, 21 (05) : 425 - 446
  • [43] Numerical simulation of unsteady turbulent river flow
    Churuksaeva, Vladislava V.
    Starchenko, Alexander V.
    [J]. Proceedings of SPIE - The International Society for Optical Engineering, 2023, 12780
  • [44] Numerical simulation of turbulent flow in an eccentric channel
    Candela, Diana Sandoval
    Gomes, Thiago Ferreira
    Goulart, J. N., V
    Mota Anflor, Carla Tatiana
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 83 : 86 - 98
  • [45] Numerical simulation of pulsating turbulent channel flow
    Scotti, A
    Piomelli, U
    [J]. PHYSICS OF FLUIDS, 2001, 13 (05) : 1367 - 1384
  • [46] NUMERICAL-SIMULATION OF TURBULENT-FLOW
    MORCHOISNE, Y
    [J]. RECHERCHE AEROSPATIALE, 1987, (01): : 71 - 82
  • [47] NUMERICAL SIMULATION OF THE TURBULENT FLOW IN ROTATING DUCT
    Li Wei
    Wang Guo-qiang(Shanghai Jiaotong University
    [J]. Journal of Hydrodynamics, 1999, (02) : 118 - 124
  • [48] Numerical simulation of turbulent jet flow and combustion
    Zhou, X
    Sun, Z
    Durst, F
    Brenner, G
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (9-10) : 179 - 191
  • [49] Numerical Simulation of Turbulent Flow in Concentric Annuli
    Bendiks Jan Boersma
    Wim-Paul Breugem
    [J]. Flow, Turbulence and Combustion, 2011, 86 : 113 - 127
  • [50] Numerical simulation of turbulent flow in a cyclonic separator
    Bogdanov, Dmitry
    Poniaev, Sergey
    [J]. 16TH RUSSIAN YOUTH CONFERENCE ON PHYSICS AND ASTRONOMY (PHYSICA.SPB/2013), 2014, 572