Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss

被引:12
|
作者
Shafee, Ahmad [1 ]
Arabkoohsar, A. [2 ]
Sheikholeslami, M. [3 ,4 ]
Jafaryar, M. [4 ]
Ayani, M. [5 ]
Trung Nguyen-Thoi [6 ,7 ]
Basha, D. Baba [8 ]
Tlili, I [9 ]
Li, Zhixiong [10 ,11 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
[3] Babol Noshirvani Univ Technol, Dept Mech Engn, Babol Sar, Iran
[4] Babol Noshirvani Univ Technol, Renewable Energy Syst & Nanofluid Applicat Heat T, Babol Sar, Iran
[5] KN Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
[6] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City 700000, Vietnam
[7] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City 700000, Vietnam
[8] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah 11952, Saudi Arabia
[9] Majmaah Univ, Coll Engn, Dept Mech & Ind Engn, Al Majmaah 11952, Saudi Arabia
[10] Ocean Univ China, Sch Engn, Qingdao 266110, Peoples R China
[11] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Wollongong, NSW 2522, Australia
关键词
Numerical method; Forced convection; Nanofluid; Exergy; New turbulator; FVM; HEAT-TRANSFER CHARACTERISTICS; POROUS-MEDIUM; TWISTED TAPE; NANOPARTICLES; TURBULATOR; EFFICIENCY; LAMINAR; PCM;
D O I
10.1016/j.physa.2019.122161
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Helical turbulator has been adopted in this article, to enhance the convective flow within a pipe. Homogeneous model was carried out for nanomaterial modeling. The Reynolds number (Re) and width of turbulator (b) vary from 5000 to 15000 and 5 to 15mm, respectively. Copper oxide nanoparticles were considered as an additive in to pure carrier fluid to gain better thermal behavior. Furthermore, exergy loss distributions for different cases have been reported. Outputs indicate that disturbance of the boundary layer enhances with rise of b. Mixing of core nanofluid flow and boundary layer enhances with augment of width of turbulator. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Entropy generation of nanomaterial through a tube considering swirl flow tools
    Ahmad Shafee
    M. Jafaryar
    Ammar I. Alsabery
    Aurang Zaib
    Houman Babazadeh
    [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144 : 1597 - 1612
  • [32] Entropy generation of nanomaterial through a tube considering swirl flow tools
    Shafee, Ahmad
    Jafaryar, M.
    Alsabery, Ammar, I
    Zaib, Aurang
    Babazadeh, Houman
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (04) : 1597 - 1612
  • [33] Heat Exchanger Network Integration Considering Flow Exergy Loss
    Jiang, Ning
    Li, Lin
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (12) : 1997 - 2004
  • [34] Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes
    Xinglong Liu
    Zahir Shah
    Mohammed R. Ikramullah
    [J]. The European Physical Journal Plus, 137
  • [35] Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes
    Liu, Xinglong
    Shah, Zahir
    Ikramullah
    Alzahrani, Mohammed R.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (01):
  • [36] Numerical simulation of heat transfer under conditions of turbulent separated flow in tube banks
    Isaev, SA
    Baranov, PA
    Kudryavtsev, NA
    [J]. HIGH TEMPERATURE, 2004, 42 (02) : 290 - 301
  • [37] Numerical Simulation of Heat Transfer under Conditions of Turbulent Separated Flow in Tube Banks
    S. A. Isaev
    P. A. Baranov
    N. A. Kudryavtsev
    [J]. High Temperature, 2004, 42 : 290 - 301
  • [38] Numerical Calculation of the Turbulent Flow of a Gas Suspension in a Tube
    A. V. Starchenko
    A. M. Bubenchikov
    E. S. Burlutskii
    [J]. Journal of Engineering Physics and Thermophysics, 2000, 73 (6) : 1135 - 1145
  • [39] Numerical Simulation of the Turbulent Flow Around a Wing
    Auerswald, Torsten
    Bange, Jens
    [J]. ADVANCES IN SIMULATION OF WING AND NACELLE STALL, 2016, 131 : 235 - 247
  • [40] Numerical Simulation of Turbulent Flow in Concentric Annuli
    Boersma, Bendiks Jan
    Breugem, Wim-Paul
    [J]. FLOW TURBULENCE AND COMBUSTION, 2011, 86 (01) : 113 - 127