A regularized Newton method in electrical impedance tomography using shape Hessian information

被引:0
|
作者
Eppler, K
Harbrecht, H
机构
[1] Weierstrass Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Kiel, Inst Informat & Prakt Math, D-24098 Kiel, Germany
来源
CONTROL AND CYBERNETICS | 2005年 / 34卷 / 01期
关键词
electrical impedance tomography; shape optimization; boundary integral equation; Newton type descent;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present paper is concerned with the identification of an obstacle or void of different conductivity included in a two-dimensional domain by measurements of voltage and currents at the boundary. We employ a reformulation of the given identification problem as a shape optimization problem as proposed by Roche and Sokolowski (1996). It turns out that the shape Hessian degenerates at the given hole which gives a further hint on the ill-posedness of the problem. For numerical methods, we propose a preprocessing for detecting the barycentre and a crude approximation of the void or hole. Then, we resolve the shape of the hole by a regularized Newton method.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 50 条
  • [41] Classification of Hemorrhage Using Priori Information of Electrode Arrangement With Electrical Impedance Tomography
    Tian, Zhiwei
    Shi, Yanyan
    Wang, Can
    Wang, Meng
    Shen, Ke
    [J]. IEEE ACCESS, 2023, 11 : 31355 - 31364
  • [42] A generative approach to Electrical Impedance Tomography image reconstruction using prior information
    Zhu, Hongxi
    Al-Jumeily, Dhiya
    Liatsis, Panos
    [J]. 2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [43] A modified quasi-Newton method for structured optimization with partial information on the Hessian
    Chen, L. H.
    Deng, N. Y.
    Zhang, J. Z.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 35 (01) : 5 - 18
  • [44] Lumen Shape Reconstruction using a Soft Robotic Balloon Catheter and Electrical Impedance Tomography
    Avery, James
    Runciman, Mark
    Fiani, Cristina
    Sanchez, Elena Monfort
    Akhond, Saina
    Liu, Zhuang
    Aristovich, Kirill
    Mylonas, George
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3414 - 3421
  • [45] A Modified Quasi-Newton Method for Structured Optimization with Partial Information on the Hessian
    L. H. Chen
    N. Y. Deng
    J. Z. Zhang
    [J]. Computational Optimization and Applications, 2006, 35 : 5 - 18
  • [46] A SENSITIVITY METHOD FOR ELECTRICAL-IMPEDANCE TOMOGRAPHY
    BARBER, DC
    [J]. CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1989, 10 (04): : 368 - 370
  • [47] Simulated annealing method in electrical impedance tomography
    Giza, Z
    Filipowicz, SF
    Sikora, J
    [J]. RECENT DEVELOPMENT IN THEORIES & NUMERICS, 2003, : 336 - 348
  • [48] The factorization method for cracks in electrical impedance tomography
    Guo, Jun
    Zhu, Xianghe
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (03):
  • [49] Block method approach in Electrical Impedance Tomography
    Vahdat, BV
    Niknam, K
    [J]. PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 475 - 478
  • [50] Supervised Descent Method for Electrical Impedance Tomography
    Li, Maokun
    Zhang, Ke
    Guo, Rui
    Yang, Fan
    Xu, Shenheng
    Abubakar, Aria
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 2342 - 2348