On the Neumann function and the method of images in spherical and ellipsoidal geometry

被引:7
|
作者
Dassios, George [2 ]
Sten, Johan C. -E. [1 ]
机构
[1] Tech Res Ctr Finland, FIN-02044 Espoo, Finland
[2] Univ Patras, Dept Chem Engn, GR-26110 Patras, Greece
关键词
Neumann boundary condition; Neumann function; image system; ellipsoidal geometry; ellipsoidal harmonics; HYPERSPHERICAL INCLUSIONS; DIELECTRIC FUNCTION; O(C(2));
D O I
10.1002/mma.1595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The invention of an image system for a boundary value problem adds to a significant understanding of the structure of the problem, both at the mathematical and at the physical level. In this paper, the interior and exterior Neumann functions for the Laplacian in the cases of spherical and ellipsoidal domains are represented in terms of images. Besides isolated images, the presence of the normal derivative in the Neumann condition demands an additional continuous distribution of images, which in the spherical cases, can be restricted to a one-dimensional manifold, whereas for the ellipsoid, both a one-dimensional and a two-dimensional distribution of images is needed. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:482 / 496
页数:15
相关论文
共 50 条
  • [41] The Cartesian method for solving partial differential equations in spherical geometry
    Swarztrauber, PN
    Williamson, DL
    Drake, JB
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 1998, 27 (1-4) : 679 - 706
  • [42] Spherical nematic shells with a prolate ellipsoidal core
    Sadati, Monirosadat
    Zhou, Ye
    Melchert, Drew
    Guo, Ashley
    Martinez-Gonzalez, Jose A.
    Roberts, Tyler F.
    Zhang, Rui
    de Pablo, Juan J.
    [J]. SOFT MATTER, 2017, 13 (41) : 7465 - 7472
  • [43] Variance reduction method for particle transport equation in spherical geometry
    Blanc, X.
    Bordin, C.
    Kluth, G.
    Samba, G.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 364 : 274 - 297
  • [44] On the PN Method in Spherical Geometry: A Stable Solution for the Exterior of a Sphere
    Garcia, R. D. M.
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2018, 47 (4-6) : 400 - 423
  • [45] Growth of spherical and ellipsoidal crystals in a metastable liquid
    Alexandrova, Irina, V
    Ivanov, Alexander A.
    Malygin, Alexey P.
    Alexandrov, Dmitri, V
    Nikishina, Margarita A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (06): : 1089 - 1100
  • [46] Inverse Method for Controlling Pure Material Solidification in Spherical Geometry
    Charifi, Mohamed
    Zegadi, Rabah
    [J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2017, 63 (02): : 103 - 110
  • [47] Growth of spherical and ellipsoidal crystals in a metastable liquid
    Irina V. Alexandrova
    Alexander A. Ivanov
    Alexey P. Malygin
    Dmitri V. Alexandrov
    Margarita A. Nikishina
    [J]. The European Physical Journal Special Topics, 2022, 231 : 1089 - 1100
  • [49] VOLUME DOUBLING MEASUREMENT OF SPHERICAL AND ELLIPSOIDAL TUMORS
    SPEARS, CP
    [J]. MEDICAL AND PEDIATRIC ONCOLOGY, 1984, 12 (03): : 212 - 217
  • [50] Spherical Geometry and Spherical Tilings with GeoGebra
    D'Azevedo Breda, Ana Maria
    Santos Dos Santos, Jose Manuel Dos
    [J]. JOURNAL FOR GEOMETRY AND GRAPHICS, 2018, 22 (02): : 283 - 299