On the Neumann function and the method of images in spherical and ellipsoidal geometry

被引:7
|
作者
Dassios, George [2 ]
Sten, Johan C. -E. [1 ]
机构
[1] Tech Res Ctr Finland, FIN-02044 Espoo, Finland
[2] Univ Patras, Dept Chem Engn, GR-26110 Patras, Greece
关键词
Neumann boundary condition; Neumann function; image system; ellipsoidal geometry; ellipsoidal harmonics; HYPERSPHERICAL INCLUSIONS; DIELECTRIC FUNCTION; O(C(2));
D O I
10.1002/mma.1595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The invention of an image system for a boundary value problem adds to a significant understanding of the structure of the problem, both at the mathematical and at the physical level. In this paper, the interior and exterior Neumann functions for the Laplacian in the cases of spherical and ellipsoidal domains are represented in terms of images. Besides isolated images, the presence of the normal derivative in the Neumann condition demands an additional continuous distribution of images, which in the spherical cases, can be restricted to a one-dimensional manifold, whereas for the ellipsoid, both a one-dimensional and a two-dimensional distribution of images is needed. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:482 / 496
页数:15
相关论文
共 50 条
  • [31] A Green's Function Method for Calculating the Potential Magnetic Field in Solar Active Regions in a Spherical Geometry
    Sadykov, V. M.
    Zimovets, I. V.
    [J]. ASTRONOMY REPORTS, 2014, 58 (05) : 345 - 352
  • [32] Plasmon resonances of spherical and ellipsoidal nanoparticles
    Liaw, JW
    Kuo, MK
    Liao, CN
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2005, 19 (13) : 1787 - 1794
  • [33] Visualization of Optical Fields with Ellipsoidal Geometry
    Ortiz-Ambriz, Antonio
    Bandres, Miguel A.
    Gutierrez-Vega, Julio C.
    [J]. LASER BEAM SHAPING XIII, 2012, 8490
  • [34] A new FQHE trial wave function for planar and spherical geometry
    DeFilippo, S
    Lubritto, C
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2469 - 2470
  • [35] A numerical study of dynamo action as a function of spherical shell geometry
    Heimpel, MH
    Aurnou, JM
    Al-Shamali, FM
    Gomez-Perez, N
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2005, 236 (1-2) : 542 - 557
  • [36] ELLIPSOIDAL GEOMETRY OF BANACH SPACES AND APPLICATIONS
    Chen, Lili
    Cui, Yunan
    Hudzik, Henryk
    Kaczmarek, Radoslaw
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (02) : 279 - 308
  • [37] METHOD FOR COMPUTING GRAVITATIONAL ATTRACTION OF 3-DIMENSIONAL BODIES IN A SPHERICAL OR ELLIPSOIDAL EARTH
    JOHNSON, LR
    LITEHISER, JJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1972, 77 (35): : 6999 - 7009
  • [38] A novel method for solving assembly constraint using spherical geometry and spherical linkage mechanism
    Chen, Yibao
    Liu, Jiaguang
    Shi, Zhiliang
    Luo, Zhen
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1976 - +
  • [39] DISCRETE APPROXIMATION OF SPHERICAL AND ELLIPSOIDAL HUYGENS SURFACES
    KONYAEV, SI
    LEBEDEV, VI
    FEDORYUK, MV
    [J]. SOVIET PHYSICS ACOUSTICS-USSR, 1979, 25 (06): : 500 - 503
  • [40] Modification of method of sampling radiation source particle in spherical geometry
    Xu Yu-Pei
    Li Shu
    [J]. ACTA PHYSICA SINICA, 2020, 69 (11)