Decentralized Robust Subspace Clustering

被引:0
|
作者
Liu, Bo [1 ]
Yuan, Xiao-Tong [2 ]
Yu, Yang [1 ]
Liu, Qingshan [2 ]
Metaxas, Dimitris N. [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08901 USA
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Prov Key Lab Big Data Anal Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of subspace clustering using the SSC (Sparse Subspace Clustering) approach, which has several desirable theoretical properties and has been shown to be effective in various computer vision applications. We develop a large scale distributed framework for the computation of SSC via an alternating direction method of multiplier (ADMM) algorithm. The proposed framework solves SSC in column blocks and only involves parallel multivariate Lasso regression subproblems and sample-wise operations. This appealing property allows us to allocate multiple cores/machines for the processing of individual column blocks. We evaluate our algorithm on a shared-memory architecture. Experimental results on real-world datasets confirm that the proposed block-wise ADMM framework is substantially more efficient than its matrix counterpart used by SSC, without sacrificing accuracy. Moreover, our approach is directly applicable to decentralized neighborhood selection for Gaussian graphical models structure estimation.
引用
收藏
页码:3539 / 3545
页数:7
相关论文
共 50 条
  • [41] A Sparse Framework for Robust Possibilistic K-Subspace Clustering
    Zeng, Shan
    Duan, Xiangjun
    Li, Hao
    Bai, Jun
    Tang, Yuanyan
    Wang, Zhiyong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (04) : 1124 - 1138
  • [42] Robust Structured Sparse Subspace Clustering with Neighborhood Preserving Projection
    Feng, Wenyi
    Guo, Wei
    Xiao, Ting
    Wang, Zhe
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1781 - 1786
  • [43] Subspace Clustering with Irrelevant Features via Robust Dantzig Selector
    Qu, Chao
    Xu, Huan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [44] Learning Markov random walks for robust subspace clustering and estimation
    Liu, Risheng
    Lin, Zhouchen
    Su, Zhixun
    [J]. NEURAL NETWORKS, 2014, 59 : 1 - 15
  • [45] Robust Spectral Subspace Clustering Based on Least Square Regression
    Zongze Wu
    Ming Yin
    Yajing Zhou
    Xiaozhao Fang
    Shengli Xie
    [J]. Neural Processing Letters, 2018, 48 : 1359 - 1372
  • [46] Robust Spectral Subspace Clustering Based on Least Square Regression
    Wu, Zongze
    Yin, Ming
    Zhou, Yajing
    Fang, Xiaozhao
    Xie, Shengli
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (03) : 1359 - 1372
  • [47] Robust Discriminant Subspace Clustering With Adaptive Local Structure Embedding
    Liu, Junyan
    Li, Dapeng
    Zhao, Haitao
    Gao, Lin
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2466 - 2479
  • [48] RMSC: Robust Modeling of Subspace Clustering for High Dimensional Data
    Radhika, K. R.
    Pushpa, C. N.
    Thriveni, J.
    Venugopal, K. R.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1535 - 1539
  • [49] Enriched Robust Multi-View Kernel Subspace Clustering
    Zhang, Mengyuan
    Liu, Kai
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1992 - 2001
  • [50] Robust discriminant low-rank representation for subspace clustering
    Zhao, Xian
    An, Gaoyun
    Cen, Yigang
    Wang, Hengyou
    Zhao, Ruizhen
    [J]. SOFT COMPUTING, 2019, 23 (16) : 7005 - 7013