Subspace Clustering with Irrelevant Features via Robust Dantzig Selector

被引:0
|
作者
Qu, Chao [1 ]
Xu, Huan [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
关键词
MOTION SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the subspace clustering problem where the data contains irrelevant or corrupted features. We propose a method termed "robust Dantzig selector" which can successfully identify the clustering structure even with the presence of irrelevant features. The idea is simple yet powerful: we replace the inner product by its robust counterpart, which is insensitive to the irrelevant features given an upper bound of the number of irrelevant features. We establish theoretical guarantees for the algorithm to identify the correct subspace, and demonstrate the effectiveness of the algorithm via numerical simulations. To the best of our knowledge, this is the first method developed to tackle subspace clustering with irrelevant features.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Robust Subspace Clustering via Thresholding
    Heckel, Reinhard
    Boelcskei, Helmut
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 6320 - 6342
  • [2] Robust Normal Estimation of Point Cloud with Sharp Features via Subspace Clustering
    Luo, Pei
    Wu, Zhuangzhi
    Xia, Chunhe
    Feng, Lu
    Jia, Bo
    [J]. FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [3] Analysis of supersaturated designs via the Dantzig selector
    Phoa, Frederick K. H.
    Pan, Yu-Hui
    Xu, Hongquan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2362 - 2372
  • [4] Robust Subspace Clustering via Latent Smooth Representation Clustering
    Xiaobo Xiao
    Lai Wei
    [J]. Neural Processing Letters, 2020, 52 : 1317 - 1337
  • [5] Robust Subspace Clustering via Latent Smooth Representation Clustering
    Xiao, Xiaobo
    Wei, Lai
    [J]. NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1317 - 1337
  • [6] Structured Matrix Recovery via the Generalized Dantzig Selector
    Chen, Sheng
    Banerjee, Arindam
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [7] Multiview Spectral Clustering via Robust Subspace Segmentation
    Pan, Yan
    Huang, Chang-Qin
    Wang, Dianhui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2467 - 2476
  • [8] Robust Subspace Clustering via Thresholding Ridge Regression
    Peng, Xi
    Yi, Zhang
    Tang, Huajin
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3827 - 3833
  • [9] Robust subspace clustering via penalized mixture of Gaussians
    Yao, Jing
    Cao, Xiangyong
    Zhao, Qian
    Meng, Deyu
    Xu, Zongben
    [J]. NEUROCOMPUTING, 2018, 278 : 4 - 11
  • [10] Robust Subspace Clustering via Smoothed Rank Approximation
    Kang, Zhao
    Peng, Chong
    Cheng, Qiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2088 - 2092