Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models

被引:0
|
作者
Saha, Abhijoy [1 ]
Kurtek, Sebastian [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
关键词
Global sensitivity analysis; Fisher-Rao metric; Bayesian nonparametric density estimation; square-root density; Dirichlet process; Dirichlet process Gaussian mixture model; Primary; Secondary; LOCAL SENSITIVITY; SAMPLING METHODS; UNKNOWN NUMBER; MIXTURE-MODELS; DISTRIBUTIONS; INFERENCE;
D O I
10.1007/s13171-018-0145-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a geometric framework to assess global sensitivity in Bayesian nonparametric models for density estimation. We study sensitivity of nonparametric Bayesian models for density estimation, based on Dirichlet-type priors, to perturbations of either the precision parameter or the base probability measure. To quantify the different effects of the perturbations of the parameters and hyperparameters in these models on the posterior, we define three geometrically-motivated global sensitivity measures based on geodesic paths and distances computed under the nonparametric Fisher-Rao Riemannian metric on the space of densities, applied to posterior samples of densities: (1) the Fisher-Rao distance between density averages of posterior samples, (2) the log-ratio of Karcher variances of posterior samples, and (3) the norm of the difference of scaled cumulative eigenvalues of empirical covariance operators obtained from posterior samples. We validate our approach using multiple simulation studies, and consider the problem of sensitivity analysis for Bayesian density estimation models in the context of three real datasets that have previously been studied.
引用
收藏
页码:104 / 143
页数:40
相关论文
共 50 条
  • [31] Bayesian Nonparametric Spectral Estimation
    Tobar, Felipe
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] NONPARAMETRIC BAYESIAN INTERVAL ESTIMATION
    BRETH, M
    [J]. BIOMETRIKA, 1979, 66 (03) : 641 - 644
  • [33] BAYESIAN NONPARAMETRIC SUBSPACE ESTIMATION
    Elvira, Clement
    Chainais, Pierre
    Dobigeon, Nicolas
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2247 - 2251
  • [34] A Bayesian nonparametric estimation to entropy
    Al-Labadi, Luai
    Patel, Vishakh
    Vakiloroayaei, Kasra
    Wan, Clement
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (02) : 421 - 434
  • [35] Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
    Shang, Han Lin
    Zhang, Xibin
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2022, 26 (01): : 55 - 71
  • [36] Bayesian Bandwidth Estimation in Nonparametric Time-Varying Coefficient Models
    Cheng, Tingting
    Gao, Jiti
    Zhang, Xibin
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (01) : 1 - 12
  • [37] Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models
    De Blasi, Pierpaolo
    James, Lancelot F.
    Lau, John W.
    [J]. BERNOULLI, 2010, 16 (03) : 679 - 704
  • [38] Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation
    Gill, Jeff
    Casella, George
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 453 - 464
  • [39] ROBUST LOCATION AND SPREAD MEASURES FOR NONPARAMETRIC PROBABILITY DENSITY FUNCTION ESTIMATION
    Lopez-Rubio, Ezequiel
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (05) : 345 - 357
  • [40] NONPARAMETRIC DENSITY ESTIMATION
    WEGMAN, EJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 2226 - &