Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation

被引:28
|
作者
Gill, Jeff [1 ]
Casella, George [2 ]
机构
[1] Washington Univ, Ctr Appl Stat, St Louis, MO 63130 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; Dirichlet process; Gibbs sampler; CHAIN MONTE-CARLO; INTERNATIONAL-RELATIONS; POLITICAL EXECUTIVES; DIRICHLET PROCESSES; INFERENCE; PARAMETERS; LIKELIHOOD; MIXTURES; DISTRIBUTIONS; SIMULATION;
D O I
10.1198/jasa.2009.0039
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A generalized linear mixed model, ordered probit, is used to estimate levels of stress in presidential political appointees as a means of understanding their surprisingly short tenures. A Bayesian approach is developed, where the random effects are modeled with a Dirichlet process mixture prior, allowing for useful incorporation of prior information, but retaining some vagueness in the form of the prior. Applications of Bayesian models in the social sciences are typically done with "uninformative" priors, although some use of informed versions exists. There has been disagreement over this, and our approach may be a step in the direction of satisfying both camps. We give a detailed description of the data, show how to implement the model, and describe some interesting conclusions. The model utilizing a nonparametric prior fits better and reveals more information in the data than standard approaches.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 50 条
  • [1] Survival Regression Models With Dependent Bayesian Nonparametric Priors
    Riva-Palacio, Alan
    Leisen, Fabrizio
    Griffin, Jim
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1530 - 1539
  • [2] A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models
    Foti, Nicholas J.
    Williamson, Sinead A.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 359 - 371
  • [3] Scaled Process Priors for Bayesian Nonparametric Estimation of the Unseen Genetic Variation
    Camerlenghi, Federico
    Favaro, Stefano
    Masoero, Lorenzo
    Broderick, Tamara
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 320 - 331
  • [4] Bayesian nonparametric multivariate ordinal regression
    Bao, Junshu
    Hanson, Timothy E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 337 - 357
  • [5] MAP ESTIMATION FOR BAYESIAN MIXTURE MODELS WITH SUBMODULAR PRIORS
    El Halabi, Marwa
    Baldassarre, Luca
    Cevher, Volkan
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [6] Bayesian nonparametric spectral density estimation using B-spline priors
    Matthew C. Edwards
    Renate Meyer
    Nelson Christensen
    Statistics and Computing, 2019, 29 : 67 - 78
  • [7] Consistency results on nonparametric Bayesian estimation of level sets using spatial priors
    Gayraud, Ghislaine
    Rousseau, Judith
    TEST, 2007, 16 (01) : 90 - 108
  • [8] Bayesian nonparametric spectral density estimation using B-spline priors
    Edwards, Matthew C.
    Meyer, Renate
    Christensen, Nelson
    STATISTICS AND COMPUTING, 2019, 29 (01) : 67 - 78
  • [9] Consistency results on nonparametric Bayesian estimation of level sets using spatial priors
    Ghislaine Gayraud
    Judith Rousseau
    TEST, 2007, 16 : 90 - 108
  • [10] Bayesian modeling via discrete nonparametric priors
    Catalano, Marta
    Lijoi, Antonio
    Prunster, Igor
    Rigon, Tommaso
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (02) : 607 - 624