Operator positivity and analytic models of commuting tuples of operators

被引:1
|
作者
Bhattacharjee, Monojit [1 ]
Sarkar, Jaydeb [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
关键词
weighted Bergman spaces; hypercontractions; multipliers; reproducing kernel Hilbert spaces; invariant subspaces; DOMAINS; THEOREM;
D O I
10.4064/sm8437-2-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study analytic models of operators of class C-.0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T is an element of C-.0 on a Hilbert space H, there exist Hilbert spaces epsilon and epsilon(*) and a partially isometric multiplier theta is an element of M(H-2 (epsilon), A(m)(2) (epsilon(*))) such that H congruent to Q(theta) - A(m)(2) (epsilon*) circle minus theta H-2(epsilon) and P-Q theta M-z vertical bar Q(theta), where A(m)(2) (epsilon(*)) is the epsilon(*)-valued weighted Bergman space and H-2 (epsilon) is the E-valued Hardy space over the unit disc a We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications to joint shift co-invariant subspaces of reproducing kernel Hilbert spaces over the polydisc. In particular, we completely analyze doubly commuting quotient modules of a large class of reproducing kernel Hilbert modules, in the sense of Arazy and Englis, over the unit polydisc D-n.
引用
收藏
页码:155 / 171
页数:17
相关论文
共 50 条
  • [42] An Analogue of the Kato–Rosenblum Theorem for Commuting Tuples of Self-Adjoint Operators
    Jingbo Xia
    [J]. Communications in Mathematical Physics, 1998, 198 : 187 - 197
  • [43] Isometric, Symmetric and Isosymmetric Commuting d-Tuples of Banach Space Operators
    B. P. Duggal
    I. H. Kim
    [J]. Results in Mathematics, 2023, 78
  • [44] Isometric, Symmetric and Isosymmetric Commuting d-Tuples of Banach Space Operators
    Duggal, B. P.
    Kim, I. H.
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [45] COMMUTING K-TUPLES OF SELF-ADJOINT OPERATORS AND MATRIX MEASURES
    BROWNE, PJ
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (03): : 321 - 326
  • [46] Standard noncommuting and commuting dilations of commuting tuples
    Bhat, BVR
    Bhattacharyya, T
    Dey, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) : 1551 - 1568
  • [47] On CNC commuting contractive tuples
    T. Bhattacharyya
    J. Eschmeier
    J. Sarkar
    [J]. Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 299 - 316
  • [48] On CNC commuting contractive tuples
    Bhattacharyya, T.
    Eschmeier, J.
    Sarkar, J.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 299 - 316
  • [49] Analytic Besov functional calculus for several commuting operators
    Batty, Charles
    Gomilko, Alexander
    Kobos, Dominik
    Tomilov, Yuri
    [J]. JOURNAL OF SPECTRAL THEORY, 2024, 14 (02) : 513 - 556
  • [50] ANALYTIC-FUNCTIONAL CALCULUS FOR SEVERAL COMMUTING OPERATORS
    TAYLOR, JL
    [J]. ACTA MATHEMATICA UPPSALA, 1970, 125 (1-2): : 1 - &