Standard noncommuting and commuting dilations of commuting tuples

被引:13
|
作者
Bhat, BVR
Bhattacharyya, T
Dey, S
机构
[1] Indian Stat Inst, Bangalore 560059, Karnataka, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Dilation; commuting tuples; complete positivity; Cuntz algebra;
D O I
10.1090/S0002-9947-03-03310-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion called 'maximal commuting piece' for tuples of Hilbert space operators. Given a commuting tuple of operators forming a row contraction, there are two commonly used dilations in multivariable operator theory. First there is the minimal isometric dilation consisting of isometries with orthogonal ranges, and hence it is a noncommuting tuple. There is also a commuting dilation related with a standard commuting tuple on boson Fock space. We show that this commuting dilation is the maximal commuting piece of the minimal isometric dilation. We use this result to classify all representations of the Cuntz algebra O-n coming from dilations of commuting tuples.
引用
收藏
页码:1551 / 1568
页数:18
相关论文
共 50 条
  • [1] STANDARD COMMUTING DILATIONS AND LIFTINGS
    Dey, Santanu
    COLLOQUIUM MATHEMATICUM, 2012, 126 (01) : 87 - 94
  • [2] UNITARY N-DILATIONS FOR TUPLES OF COMMUTING MATRICES
    McCarthy, John E.
    Shalit, Orr Moshe
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 563 - 571
  • [3] Commuting and Noncommuting Infinitesimals
    Katz, Mikhail G.
    Leichtnam, Eric
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (07): : 631 - 641
  • [4] On commuting and noncommuting complexes
    Pakianathan, J
    Yalçin, E
    JOURNAL OF ALGEBRA, 2001, 236 (01) : 396 - 418
  • [5] Isometric dilations of non-commuting finite rank n-tuples
    Davidson, KR
    Kribs, DW
    Shpigel, ME
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03): : 506 - 545
  • [6] ON ρ-DILATIONS OF COMMUTING OPERATORS
    Muller, Vladimir
    JOURNAL OF OPERATOR THEORY, 2017, 78 (01) : 3 - 20
  • [7] On CNC commuting contractive tuples
    T. Bhattacharyya
    J. Eschmeier
    J. Sarkar
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 299 - 316
  • [8] On tuples of commuting compact operators
    Bhattacharyya, T
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1996, 32 (05) : 785 - 795
  • [9] UNITARY DILATIONS FOR COMMUTING CONTRACTIONS
    PARROTT, S
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (02) : 481 - &
  • [10] On CNC commuting contractive tuples
    Bhattacharyya, T.
    Eschmeier, J.
    Sarkar, J.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 299 - 316