Cramer-Rao Lower Bounds of Model-Based Electrocardiogram Parameter Estimation

被引:0
|
作者
Fattahi, Davood [1 ]
Sameni, Reza [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz 7134851154, Iran
[2] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA 30322 USA
关键词
Electrocardiography; Parameter estimation; Bayes methods; Noise measurement; Mathematical models; Computational modeling; Annotations; Electrocardiogram; parameter estimation; Cramer-Rao lower bound; electrocardiogram modeling; ECG fiducial points; sum of Gaussian model; FILTERING FRAMEWORK; ECG SIGNALS; CLASSIFICATION; REPRESENTATION; DELINEATION; FEATURES; DATABASE;
D O I
10.1109/TSP.2022.3182113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Clinical parameter estimation from the electrocardiogram (ECG) is a recurrent field of research. It is debated that ECG parameters estimated by human experts and machines/algorithms is always model-based (implicitly or explicitly). Therefore, all estimation algorithm used in this context have performance bounds in terms of the achievable mean squared error, which are not exceedable. These bounds depend on the adopted data-model, the estimation scheme (least-squares error, maximum likelihood, or Bayesian), and prior assumptions on the model parameters and noise distributions. In this research, we develop a comprehensive theoretical framework for ECG parameter estimation and derive the Cramer-Rao lower bounds (CRLBs) for the most popular signal models used in the ECG modeling literature, namely functional expansions (including polynomials) and sum of Gaussian functions. The developed framework is evaluated over real and synthetic data for three popular applications: T-to-R wave ratio estimation, ST-segment analysis and QT-interval estimation, using the state-of-the-art estimators in each context. The proposed framework and the derived CRLBs provide practical guidelines for the selection of data-models, sampling frequency (beyond the Nyquist rate), modeling segment length, number of beats required for ECG beat averaging, and other factors that influence the accuracy of ECG-based clinical parameter estimation.
引用
收藏
页码:3181 / 3192
页数:12
相关论文
共 50 条
  • [1] Cramer-Rao bounds for circadian rhythm parameter estimation
    Zarowski, C
    Kropyvnytskyy, I
    [J]. IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1083 - 1086
  • [2] Cramer-Rao bounds for shallow water environmental parameter estimation
    Daly, PM
    Baggeroer, AB
    [J]. OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 430 - 435
  • [3] Cramer-Rao Lower Bounds for Radar Parameter Estimation in Noise Plus Structured Interference
    Masarik, Matthew P.
    Subotic, Nikola S.
    [J]. 2016 IEEE RADAR CONFERENCE (RADARCONF), 2016, : 228 - 231
  • [4] Parameter estimation and Cramer-Rao lower bounds in non-contact temperature measurement
    Exel, Dominik
    Zagar, Bernhard
    Schuster, Stefan
    Gangiberger, Vera
    Reisinger, Johann
    [J]. TM-TECHNISCHES MESSEN, 2019, 86 (01) : 45 - 56
  • [5] Cramer-Rao Lower Bounds for Hybrid Distance Estimation Schemes
    Sand, S.
    Wang, W.
    Dammann, A.
    [J]. 2012 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2012,
  • [6] Achieving Cramer-Rao Lower Bounds in Sensor Network Estimation
    Djurovic, Igor
    [J]. IEEE SENSORS LETTERS, 2018, 2 (01)
  • [7] Cramer-Rao lower bounds for QAM phase and frequency estimation
    Rice, F
    Cowley, B
    Moran, B
    Rice, M
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (09) : 1582 - 1591
  • [8] Posterior Cramer-Rao Lower Bounds for dual Kalman estimation
    Saatci, Esra
    Akan, Aydin
    [J]. DIGITAL SIGNAL PROCESSING, 2012, 22 (01) : 47 - 53
  • [9] Cramer-Rao Lower Bounds for Estimation of Phase in LBI Based Localization Systems
    Pourhomayoun, Mohammad
    Fowler, Mark
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 909 - 911
  • [10] Cramer-Rao Lower Bounds of TDOA and FDOA Estimation Based on Satellite Signals
    Liu, Mingqian
    Yi, Fei
    Liu, Peng
    Li, Bingbing
    [J]. PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 654 - 657