Posterior Cramer-Rao Lower Bounds for dual Kalman estimation

被引:4
|
作者
Saatci, Esra [1 ]
Akan, Aydin [2 ]
机构
[1] Istanbul Kultur Univ, Dept Elect Engn, Istanbul, Turkey
[2] Istanbul Univ, Dept Eect & Elect Eng, Istanbul, Turkey
关键词
Posterior Cramer-Rao Bound; Dual Kalman filter; Generalized Gaussian distribution; Biomedical signals processing;
D O I
10.1016/j.dsp.2011.10.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the Posterior Cramer-Rao Lower Bounds (PCRLB) for the dual Kalman filter estimation where the parameters are assumed to be time-invariant and stationary random variables. Relations between the PCRLB, the states, and the parameters are established and recursions are obtained for finite observation time. As a case study, the closed-form expressions of the PCRLB for a linear lung model, called the Mead respiratory model, are derived. Distribution of the parameters is assumed to be Generalized Gaussian Distribution (GGD) which enabled an investigation of different shape factors. Simulations performed on the signals collected from the human respiratory system yielded encouraging results. It is concluded that the parameter distribution should be chosen as Gaussian to super-Gaussian in order for the PCRLB algorithm to converge. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [1] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 1 - 14
  • [2] CRAMER-RAO BOUNDS FOR POSTERIOR VARIANCES
    GHOSH, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 17 (03) : 173 - 178
  • [3] New Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zheng, Yujiao
    Ozdemir, Onur
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5549 - 5556
  • [4] Posterior Cramer-Rao bounds for state estimation with quantized measurement
    Duan, Zhansheng
    Jilkov, Vesselin P.
    Li, X. Rong
    [J]. PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 376 - 380
  • [5] Cramer-Rao Lower Bounds for Hybrid Distance Estimation Schemes
    Sand, S.
    Wang, W.
    Dammann, A.
    [J]. 2012 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2012,
  • [6] Achieving Cramer-Rao Lower Bounds in Sensor Network Estimation
    Djurovic, Igor
    [J]. IEEE SENSORS LETTERS, 2018, 2 (01)
  • [7] Cramer-Rao lower bounds for QAM phase and frequency estimation
    Rice, F
    Cowley, B
    Moran, B
    Rice, M
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (09) : 1582 - 1591
  • [8] Posterior Cramer-Rao lower bounds for bearing-only tracking
    Guo Lei
    Tang Bin
    Liu Gang
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (01) : 27 - 32
  • [9] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Recursive Filtering
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1528 - 1535
  • [10] Posterior Cramer-Rao lower bounds for bearing-only tracking
    Guo Lei1
    2. National Key Laboratory of Information Integrated Control
    [J]. Journal of Systems Engineering and Electronics, 2008, (01) : 27 - 32