Cramer-Rao bounds for circadian rhythm parameter estimation

被引:1
|
作者
Zarowski, C [1 ]
Kropyvnytskyy, I [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2M7, Canada
关键词
circadian rhythm; sinusoid parameter estimation; Cramer-Rao bounds;
D O I
10.1109/CCECE.2002.1013097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zarowski and Kropyvnytskyy [1] have reported a new algorithm called the modified iterative cosinor algorithm (MICA) for estimation of circadian rhythms in brain-injured human patients. Circadian rhythm parameter estimation is the problem of estimating the parameters of a sinusoid in noise and interference. The data from which the parameter estimates are derived are various physiological data sets such as body core temperature, heart rate, blood pressure, etc. The noise is assumed to be white Gaussian noise, while the interference (trend) components are the harmonics and subharmonics of the patients fundamental rhythm. In [1] it was mentioned that we have Cramer-Rao bounds on the variance of parameter estimates, but space did not permit their presentation at the time. In this paper we therefore present the bounds mentioned in [1].
引用
收藏
页码:1083 / 1086
页数:2
相关论文
共 50 条
  • [1] Cramer-Rao bounds for shallow water environmental parameter estimation
    Daly, PM
    Baggeroer, AB
    [J]. OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 430 - 435
  • [2] CRAMER-RAO BOUNDS FOR PARAMETER ESTIMATION OF PHASE-CODING SIGNALS
    Huang Chunlin Jiang Wengli Zhou Yiyu School of Electronic Science and Engineering NUDT Changsha China
    [J]. Journal of Electronics., 2005, (01) - 8
  • [3] CRAMER-RAO BOUNDS FOR PARAMETER ESTIMATION OF PHASE-CODING SIGNALS
    Huang Chunlin Jiang Wengli Zhou Yiyu (School of Electronic Science and Engineering
    [J]. Journal of Electronics(China), 2005, (01) : 1 - 8
  • [4] Cramer-Rao bounds for MIMO channel estimation
    Berriche, L
    Abed-Meraim, K
    Belfiore, JC
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PROCEEDINGS: AUDIO AND ELECTROACOUSTICS SIGNAL PROCESSING FOR COMMUNICATIONS, 2004, : 397 - 400
  • [5] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877
  • [6] Cramer-Rao bounds for blind multichannel estimation
    de Carvalho, E
    Cioffi, J
    Slock, D
    [J]. GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 1036 - 1040
  • [7] Cramer-Rao Bounds for Road Profile Estimation
    Akcay, Huseyin
    Turkay, Semiha
    [J]. 2017 IEEE 3RD COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC), 2017,
  • [8] CRAMER-RAO BOUNDS FOR THE ESTIMATION OF NORMAL MIXTURES
    PERLOVSKY, LI
    [J]. PATTERN RECOGNITION LETTERS, 1989, 10 (03) : 141 - 148
  • [9] Cramer-Rao Lower Bounds of Model-Based Electrocardiogram Parameter Estimation
    Fattahi, Davood
    Sameni, Reza
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3181 - 3192
  • [10] Cramer-Rao bounds and parameter estimation for random amplitude phase modulated signals
    Ghogho, M
    Nandi, AK
    Swami, A
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1577 - 1580