Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets

被引:0
|
作者
Yang, J [1 ]
Peng, W [1 ]
Ward, MO [1 ]
Rundensteiner, EA [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
关键词
dimension ordering; dimension spacing; dimension filtering; multidimensional visualization; high dimensional datasets;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large numbers of dimensions not only cause clutter in multidimensional visualizations, but also make it difficult for users to navigate the data space. Effective dimension management, such as dimension ordering, spacing and filtering, is critical for visual exploration of such datasets. Dimension ordering and spacing explicitly reveal dimension relationships in arrangement-sensitive multidimensional visualization techniques, such as Parallel Coordinates, Star Glyphs, and Pixel-Oriented techniques. They facilitate the visual discovery of patterns within the data. Dimension filtering hides some of the dimensions to reduce clutter while preserving the major information of the dataset. In this paper, we propose an interactive hierarchical dimension ordering, spacing and filtering approach, called DOSFA. DOSFA is based on dimension hierarchies derived from similarities among dimensions. It is a scalable multi-resolution approach making dimensional management a tractable task. On the one hand, it automatically generates default settings for dimension ordering, spacing and filtering. On the other hand, it allows users to efficiently control all aspects of this dimension management process via visual interaction tools for dimension hierarchy manipulation. A case study visualizing a dataset containing over 200 dimensions reveals how our proposed approach greatly improves the effectiveness of high dimensional visualization techniques.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] Value and relation display for interactive exploration of high dimensional datasets
    Yang, J
    Patro, A
    Huang, SP
    Mehta, N
    Ward, MO
    Rundensteiner, EA
    [J]. IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, : 73 - 80
  • [2] Visualizing High-Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis
    Ferdosi, Bilkis J.
    Roerdink, Jos B. T. M.
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (03) : 1121 - 1130
  • [3] An Interactive Exploration Tool for High-Dimensional Datasets: A Shock Physics Case Study
    Biswas, Ayan
    Biwer, Christopher M.
    Walters, David J.
    Ahrens, James
    Francom, Devin
    Lawrence, Earl
    Sandberg, Richard L.
    Fredenburg, D. Anthony
    Bolme, Cynthia
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2020, 22 (02) : 44 - 54
  • [4] Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data
    Yuan, Xiaoru
    Ren, Donghao
    Wang, Zuchao
    Guo, Cong
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2625 - 2633
  • [5] DimLift: Interactive Hierarchical Data Exploration Through Dimensional Bundling
    Garrison, Laura
    Mueller, Juliane
    Schreiber, Stefanie
    Oeltze-Jafra, Steffen
    Hauser, Helwig
    Bruckner, Stefan
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (06) : 2908 - 2922
  • [6] Comparison of Dimension Reduction Techniques on High Dimensional Datasets
    Yildiz, Kazim
    Camurcu, Yilmaz
    Dogan, Buket
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (02) : 256 - 262
  • [7] Efficient Hierarchical Clustering of Large High Dimensional Datasets
    Gilpin, Sean
    Qian, Buyue
    Davidson, Ian
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1371 - 1380
  • [8] INTEGRATIVE EXPLORATION OF LARGE HIGH-DIMENSIONAL DATASETS
    Pardy, Christopher
    Galbraith, Sally
    Wilson, Susan R.
    [J]. ANNALS OF APPLIED STATISTICS, 2018, 12 (01): : 178 - 199
  • [9] Interactive exploration of high volume datasets using HiVol and HiStats.
    Baker, D
    Walden, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U356 - U356
  • [10] Interactive Exploration of Subspace Clusters for High Dimensional Data
    Kristensen, Jesper
    Mai, Son T.
    Assent, Ira
    Jacobsen, Jon
    Bay Vo
    Anh Le
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2017, PT I, 2017, 10438 : 327 - 342